Hydrolyzed Collagen—Sources and Applications (2024)

1. Sorushanova A., Delgado L.M., Wu Z., Shologu N., Kshirsagar A., Raghunath R., Mullen A.M., Bayon Y., Pandit A., Raghunath M.J.A.M. The collagen suprafamily: From biosynthesis to advanced biomaterial development. Adv. Mater. 2019;31:1801651. doi:10.1002/adma.201801651. [PubMed] [CrossRef] [Google Scholar]

2. Gelse K., Pöschl E., Aigner T. Collagens—structure, function, and biosynthesis. Adv. Drug Deliv. Rev. 2003;55:1531–1546. doi:10.1016/j.addr.2003.08.002. [PubMed] [CrossRef] [Google Scholar]

3. Schrieber R., Gareis H. Gelatine Handbook. Theory and Industrial Practice. WILEY-VCH Verlag GmbH & Co. KGaA; Weinheim, Germany: 2007. pp. 45–117. [Google Scholar]

4. Asghar A., Henrickson R.L. Chemical, Biochemical, Functional, and Nutritional Characteristics of Collagen in Food Systems. In: Chichester C.O., Mrak E.M., Stewart G.F., editors. Advances in Food Research. Vol. 28. Academic Press; Cambridge, MA, USA: 1982. pp. 231–372. [PubMed] [Google Scholar]

5. Bateman J.F., Lamande S.R., Ramshaw J.A. Collagen superfamily. Extracell. Matrix. 1996;2:22–67. [Google Scholar]

6. Gómez-Guillén M.C., Giménez B., López-Caballero M.E., Montero M.P. Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydrocoll. 2011;25:1813–1827. doi:10.1016/j.foodhyd.2011.02.007. [CrossRef] [Google Scholar]

7. Lin K., Zhang D., Macedo M.H., Cui W., Sarmento B., Shen G. Advanced collagen-based biomaterials for regenerative biomedicine. Adv. Funct. Mater. 2018;29:1804943. doi:10.1002/adfm.201804943. [CrossRef] [Google Scholar]

8. Liu D., Nikoo M., Boran G., Zhou P., Regenstein J.M. Collagen and gelatin. Annu. Rev. Food Sci. Technol. 2015;6:527–557. doi:10.1146/annurev-food-031414-111800. [PubMed] [CrossRef] [Google Scholar]

9. Nimni M.E. Collagen. Volume 1. CRC Press; Boca Raton, FL, USA: 2018. Biochemistry; pp. 23–35. [Google Scholar]

10. Muiznieks L.D., Keeley F.W. Molecular assembly and mechanical properties of the extracellular matrix: A fibrous protein perspective. Biochim. Et Biophys. Acta (Bba) - Mol. Basis Dis. 2013;1832:866–875. doi:10.1016/j.bbadis.2012.11.022. [PubMed] [CrossRef] [Google Scholar]

11. Haq F., Ahmed N., Qasim M. Comparative genomic analysis of collagen gene diversity. 3 Biotech. 2019;9:83. doi:10.1007/s13205-019-1616-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

12. Shoulders M.D., Raines R.T. Collagen structure and stability. Annu. Rev. 2009;78:929–958. doi:10.1146/annurev.biochem.77.032207.120833. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

13. Ricard-Blum S. The collagen family. Cold Spring Harb. Perspect. Biol. 2011;3:a004978. doi:10.1101/cshperspect.a004978. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

14. Purcel G., Meliţă D., Andronescu E., Grumezescu A.M. Collagen-based nanobiomaterials: Challenges in soft tissue engineering. In: Grumezescu A.M., editor. Nanobiomaterials in Soft Tissue Engineering. Applications of Nanobiomaterials. Volume 5. William Andrew Publishing; Oxford, UK: 2016. pp. 173–200. [Google Scholar]

15. Bella J., Hulmes D.J.S. Fibrillar Collagens. In: Parry D.A.D., Squire J.M., editors. Fibrous Proteins: Structures and Mechanisms. Volume 82. Springer International Publishing; Cham, Switzerland: 2017. pp. 457–490. [PubMed] [Google Scholar]

16. Gordon M.K., Hahn R.A. Collagens. Cell Tissue Res. 2009;339:247. doi:10.1007/s00441-009-0844-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

17. Fang M., Yuan J., Peng C., Li Y. Collagen as a double-edged sword in tumor progression. Tumor Biol. 2014;35:2871–2882. doi:10.1007/s13277-013-1511-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

18. Ferraro V., Gaillard-Martinie B., Sayd T., Chambon C., Anton M., Santé-Lhoutellier V. Collagen type I from bovine bone. Effect of animal age, bone anatomy and drying methodology on extraction yield, self-assembly, thermal behaviour and electrokinetic potential. Int. J. Biol. Macromol. 2017;97:55–66. doi:10.1016/j.ijbiomac.2016.12.068. [PubMed] [CrossRef] [Google Scholar]

19. Darine S., Christophe V., Gholamreza D. Production and functional properties of beef lung protein concentrates. Meat Sci. 2010;84:315–322. doi:10.1016/j.meatsci.2009.03.007. [PubMed] [CrossRef] [Google Scholar]

20. Santos M.H., Silva R.M., Dumont V.C., Neves J.S., Mansur H.S., Heneine L.G.D. Extraction and characterization of highly purified collagen from bovine pericardium for potential bioengineering applications. Mater. Sci. Eng. C. 2013;33:790–800. doi:10.1016/j.msec.2012.11.003. [PubMed] [CrossRef] [Google Scholar]

21. Paschou A.M., Katsikini M., Christofilos D., Arvanitidis J., Ves S. High pressure Raman study of type-I collagen. Febs J. 2018;285:2641–2653. doi:10.1111/febs.14506. [PubMed] [CrossRef] [Google Scholar]

22. Lin Y.-K., Lin T.-Y., Su H.-P. Extraction and characterisation of telopeptide-poor collagen from porcine lung. Food Chem. 2011;124:1583–1588. doi:10.1016/j.foodchem.2010.08.018. [CrossRef] [Google Scholar]

23. Rieu C., Picaut L., Mosser G., Trichet L. From tendon injury to collagen-based tendon regeneration: Overview and recent advances. Curr. Pharm. Des. 2017;23:3483–3506. doi:10.2174/1381612823666170516130515. [PubMed] [CrossRef] [Google Scholar]

24. Abraham G.A., Murray J., Billiar K., Sullivan S.J. Evaluation of the porcine intestinal collagen layer as a biomaterial. J. Biomed. Mater. Res. 2000;51:442–452. doi:10.1002/1097-4636(20000905)51:3<442::AID-JBM19>3.0.CO;2-4. [PubMed] [CrossRef] [Google Scholar]

25. Silvipriya K., Kumar K.K., Bhat A., Kumar B.D., John A., Lakshmanan P. Collagen: Animal sources and biomedical application. J. Appl. Pharm. Sci. 2015;5:123–127. doi:10.7324/JAPS.2015.50322. [CrossRef] [Google Scholar]

26. Fauzi M.B., Lokanathan Y., Aminuddin B.S., Ruszymah B.H.I., Chowdhury S.R. Ovine tendon collagen: Extraction, characterisation and fabrication of thin films for tissue engineering applications. Mater. Sci. Eng. C. 2016;68:163–171. doi:10.1016/j.msec.2016.05.109. [PubMed] [CrossRef] [Google Scholar]

27. León-López A., Fuentes-Jiménez L., Hernández-Fuentes A.D., Campos-Montiel R.G., Aguirre-Álvarez G. Hydrolysed collagen from sheepskins as a source of functional peptides with antioxidant activity. Int. J. Mol. Sci. 2019;20:3931. doi:10.3390/ijms20163931. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

28. Bhagwat P.K., Dandge P.B. Isolation, characterization and valorizable applications of fish scale collagen in food and agriculture industries. Biocatal. Agric. Biotechnol. 2016;7:234–240. doi:10.1016/j.bcab.2016.06.010. [CrossRef] [Google Scholar]

29. Oechsle A.M., Akgün D., Krause F., Maier C., Gibis M., Kohlus R., Weiss J. Microstructure and physical–chemical properties of chicken collagen. Food Struct. 2016;7:29–37. doi:10.1016/j.foostr.2016.02.001. [CrossRef] [Google Scholar]

30. Kim H.-W., Yeo I.-J., Hwang K.-E., Song D.-H., Kim Y.-J., Ham Y.-K., Jeong T.-J., Choi Y.-S., Kim C.-J. Isolation and characterization of pepsin-soluble collagens from bones, skins, and tendons in duck feet. Korean J. Food Sci. Anim. Resour. 2016;36:665. doi:10.5851/kosfa.2016.36.5.665. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

31. Martínez-Ortiz M.A., Hernández-Fuentes A.D., Pimentel-González D.J., Campos-Montiel R.G., Vargas-Torres A., Aguirre-Álvarez G. Extraction and characterization of collagen from rabbit skin: Partial characterization. Cyta-J. Food. 2015;13:53–258. [Google Scholar]

32. Zou Y., Wang L., Cai P., Li P., Zhang M., Sun Z., Sun C., Xu W., Wang D. Effect of ultrasound assisted extraction on the physicochemical and functional properties of collagen from soft-shelled turtle calipash. Int. J. Biol. Macromol. 2017;105:1602–1610. doi:10.1016/j.ijbiomac.2017.03.011. [PubMed] [CrossRef] [Google Scholar]

33. Schmidt M., Dornelles R., Mello R., Kubota E., Mazutti M., Kempka A., Demiate I. Collagen extraction process. Int. Food Res. J. 2016;23:913–922. [Google Scholar]

34. Almeida A.J., Fernandes A.I. Exploring a new jellyfish collagen in the production of microparticles for protein delivery AU - Calejo, M. Teresa. J. Microencapsul. 2012;29:520–531. [PubMed] [Google Scholar]

35. Liu D., Wei G., Li T., Hu J., Lu N., Regenstein J.M., Zhou P. Effects of alkaline pretreatments and acid extraction conditions on the acid-soluble collagen from grass carp (Ctenopharyngodon idella) skin. Food Chem. 2015;172:836–843. doi:10.1016/j.foodchem.2014.09.147. [PubMed] [CrossRef] [Google Scholar]

36. Li Z.-R., Wang B., Chi C.-f., Zhang Q.-H., Gong Y.-d., Tang J.-J., Luo H.-y., Ding G.-f. Isolation and characterization of acid soluble collagens and pepsin soluble collagens from the skin and bone of Spanish mackerel (Scomberomorous niphonius) Food Hydrocoll. 2013;31:103–113. doi:10.1016/j.foodhyd.2012.10.001. [CrossRef] [Google Scholar]

37. Yu D., Chi C.-F., Wang B., Ding G.-F., Li Z.-R. Characterization of acid-and pepsin-soluble collagens from spines and skulls of skipjack tuna (Katsuwonus pelamis) Chin. J. Nat. Med. 2014;12:712–720. doi:10.1016/S1875-5364(14)60110-2. [PubMed] [CrossRef] [Google Scholar]

38. Kim H.K., Kim Y.H., Kim Y.J., Park H.J., Lee N.H. Effects of ultrasonic treatment on collagen extraction from skins of the sea bass Lateolabrax japonicus. Fish. Sci. 2012;78:485–490. doi:10.1007/s12562-012-0472-x. [CrossRef] [Google Scholar]

39. Li D., Mu C., Cai S., Lin W. Ultrasonic irradiation in the enzymatic extraction of collagen. Ultrason. Sonochemistry. 2009;16:605–609. doi:10.1016/j.ultsonch.2009.02.004. [PubMed] [CrossRef] [Google Scholar]

40. Ran X.G., Wang L.Y. Use of ultrasonic and pepsin treatment in tandem for collagen extraction from meat industry by-products. J. Sci. Food Agric. 2014;94:585–590. doi:10.1002/jsfa.6299. [PubMed] [CrossRef] [Google Scholar]

41. Prestes R. Collagen and its derivatives: Characteristics and applications in meat products. Rev. Unopar Cient. Ciên. Biol. Saúde. 2013;15:65–74. [Google Scholar]

42. Skopinska-Wisniewska J., Olszewski K., Bajek A., Rynkiewicz A., Sionkowska A. Dialysis as a method of obtaining neutral collagen gels. Mater. Sci. Eng. C. 2014;40:65–70. doi:10.1016/j.msec.2014.03.029. [PubMed] [CrossRef] [Google Scholar]

43. Ketnawa S., Benjakul S., Martínez-Alvarez O., Rawdkuen S. Fish skin gelatin hydrolysates produced by visceral peptidase and bovine trypsin: Bioactivity and stability. Food Chem. 2017;215:383–390. doi:10.1016/j.foodchem.2016.07.145. [PubMed] [CrossRef] [Google Scholar]

44. Thuanthong M., De Gobba C., Sirinupong N., Youravong W., Otte J. Purification and characterization of angiotensin-converting enzyme-inhibitory peptides from Nile tilapia (Oreochromis niloticus) skin gelatine produced by an enzymatic membrane reactor. J. Funct. Foods. 2017;36:243–254. doi:10.1016/j.jff.2017.07.011. [CrossRef] [Google Scholar]

45. Hong H., Chaplot S., Chalamaiah M., Roy B.C., Bruce H.L., Wu J. Removing cross-linked telopeptides enhances the production of low-molecular-weight collagen peptides from spent hens. J. Agric. Food Chem. 2017;65:7491–7499. doi:10.1021/acs.jafc.7b02319. [PubMed] [CrossRef] [Google Scholar]

46. Cheung I.W.Y., Li-Chan E.C.Y. Enzymatic production of protein hydrolysates from steelhead (Oncorhynchus mykiss) skin gelatin as inhibitors of dipeptidyl-peptidase IV and angiotensin-I converting enzyme. J. Funct. Foods. 2017;28:254–264. doi:10.1016/j.jff.2016.10.030. [CrossRef] [Google Scholar]

47. Barzideh Z., Latiff A.A., Gan C.-Y., Abedin M.Z., Alias A.K. ACE inhibitory and antioxidant activities of collagen hydrolysates from the ribbon jellyfish (Chrysaora sp.) Food Technol. Biotechnol. 2014;52:495–504. doi:10.17113/ftb.52.04.14.3641. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

48. Bilek S.E., Bayram S.K. Fruit juice drink production containing hydrolyzed collagen. J. Funct. Foods. 2015;14:562–569. doi:10.1016/j.jff.2015.02.024. [CrossRef] [Google Scholar]

49. Offengenden M., Chakrabarti S., Wu J. Chicken collagen hydrolysates differentially mediate anti-inflammatory activity and type I collagen synthesis on human dermal fibroblasts. Food Sci. Hum. Wellness. 2018;7:138–147. doi:10.1016/j.fshw.2018.02.002. [CrossRef] [Google Scholar]

50. Masuda R., Dazai Y., Mima T., Koide T. Structure-activity relationships and action mechanisms of collagen-like antimicrobial peptides. Pept. Sci. 2017;108:e22931. doi:10.1002/bip.22931. [PubMed] [CrossRef] [Google Scholar]

51. Chi C.-F., Cao Z.-H., Wang B., Hu F.-Y., Li Z.-R., Zhang B. Antioxidant and functional properties of collagen hydrolysates from spanish mackerel skin as influenced by average molecular weight. Molecules. 2014;19:11211–11230. doi:10.3390/molecules190811211. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

52. Onuh J.O., Girgih A.T., Aluko R.E., Aliani M. In vitro antioxidant properties of chicken skin enzymatic protein hydrolysates and membrane fractions. Food Chem. 2014;150:366–373. doi:10.1016/j.foodchem.2013.10.107. [PubMed] [CrossRef] [Google Scholar]

53. Lin Y.-J., Le G.-W., Wang J.-Y., Li Y.-X., Shi Y.-H., Sun J. Antioxidative peptides derived from enzyme hydrolysis of bone collagen after microwave assisted acid pre-treatment and nitrogen protection. Int. J. Mol. Sci. 2010;11:4297–4308. doi:10.3390/ijms11114297. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

54. Hong H., Fan H., Chalamaiah M., Wu J. Preparation of low-molecular-weight, collagen hydrolysates (peptides): Current progress, challenges, and future perspectives. Food Chem. 2019;301:125222. doi:10.1016/j.foodchem.2019.125222. [PubMed] [CrossRef] [Google Scholar]

55. Elavarasan K., Shamasundar B., Badii F., Howell N. Angiotensin I-converting enzyme (ACE) inhibitory activity and structural properties of oven-and freeze-dried protein hydrolysate from fresh water fish (Cirrhinus mrigala) Food Chem. 2016;206:210–216. doi:10.1016/j.foodchem.2016.03.047. [PubMed] [CrossRef] [Google Scholar]

56. Powell T., Bowra S., Cooper H.J. Subcritical water hydrolysis of peptides: Amino acid side-chain modifications. J. Am. Soc. Mass Spectrom. 2017;28:1775–1786. doi:10.1007/s13361-017-1676-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

57. Jo Y.-J., Kim J.-H., Jung K.-H., Min S.-G., Chun J.-Y. Effect of sub-and super-critical water treatment on physicochemical properties of porcine skin. Korean J. Food Sci. Anim. Resour. 2015;35:35. doi:10.5851/kosfa.2015.35.1.35. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

58. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680. doi:10.1038/227680a0. [PubMed] [CrossRef] [Google Scholar]

59. Schägger H. Tricine–sds-page. Nat. Protoc. 2006;1:16. doi:10.1038/nprot.2006.4. [PubMed] [CrossRef] [Google Scholar]

60. Haider S.R., Reid H.J., Sharp B.L. Tricine-sds-page. In: Kurien B.T., Scofield R.H., editors. Protein Electrophoresis: Methods and Protocols. Volume 869. Humana Press; New York, NY, USA: 2012. pp. 81–91. [PubMed] [Google Scholar]

61. Karas M., Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal. Chem. 1988;60:2299–2301. doi:10.1021/ac00171a028. [PubMed] [CrossRef] [Google Scholar]

62. Hema G., Joshy C., Shyni K., Chatterjee N.S., Ninan G., Mathew S. Optimization of process parameters for the production of collagen peptides from fish skin (Epinephelus malabaricus) using response surface methodology and its characterization. J. Food Sci. Technol. 2017;54:488–496. doi:10.1007/s13197-017-2490-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

63. Lecchi P., Olson M., Brancia F.L. The role of esterification on detection of protonated and deprotonated peptide ions in matrix assisted laser desorption/ionization (MALDI) mass spectrometry (MS) J. Am. Soc. Mass Spectrom. 2005;16:1269–1274. doi:10.1016/j.jasms.2005.03.019. [PubMed] [CrossRef] [Google Scholar]

64. Pataridis S., Eckhardt A., Mikulikova K., Sedlakova P., Mikšík I. Identification of collagen types in tissues using HPLC-MS/MS. J. Sep. Sci. 2008;31:3483–3488. doi:10.1002/jssc.200800351. [PubMed] [CrossRef] [Google Scholar]

65. Zhang G., Sun A., Li W., Liu T., Su Z. Mass spectrometric analysis of enzymatic digestion of denatured collagen for identification of collagen type. J. Chromatogr. A. 2006;1114:274–277. doi:10.1016/j.chroma.2006.03.039. [PubMed] [CrossRef] [Google Scholar]

66. Mikulíková K., Eckhardt A., Pataridis S., Mikšík I. Study of posttranslational non-enzymatic modifications of collagen using capillary electrophoresis/mass spectrometry and high performance liquid chromatography/mass spectrometry. J. Chromatogr. A. 2007;1155:125–133. doi:10.1016/j.chroma.2007.01.020. [PubMed] [CrossRef] [Google Scholar]

67. Zhang Y., Zhang Y., Liu X., Huang L., Chen Z., Cheng J. Influence of hydrolysis behaviour and microfluidisation on the functionality and structural properties of collagen hydrolysates. Food Chem. 2017;227:211–218. doi:10.1016/j.foodchem.2017.01.049. [PubMed] [CrossRef] [Google Scholar]

68. Li Z., Wang B., Chi C., Gong Y., Luo H., Ding G. Influence of average molecular weight on antioxidant and functional properties of cartilage collagen hydrolysates from Sphyrna lewini, Dasyatis akjei and Raja porosa. Food Res. Int. 2013;51:283–293. doi:10.1016/j.foodres.2012.12.031. [CrossRef] [Google Scholar]

69. Sun Pan B., En Chen H.O.A., Sung W.C. Molecular and thermal characteristics of acid-soluble collagen from orbicular batfish: Effects of deep-sea water culturing. Int. J. Food Prop. 2018;21:1080–1090. doi:10.1080/10942912.2018.1476873. [CrossRef] [Google Scholar]

70. Chen J., Li L., Yi R., Xu N., Gao R., Hong B. Extraction and characterization of acid-soluble collagen from scales and skin of tilapia (Oreochromis niloticus) Lwt-Food Sci. Technol. 2016;66:453–459. doi:10.1016/j.lwt.2015.10.070. [CrossRef] [Google Scholar]

71. Abdollahi M., Rezaei M., Jafarpour A., Undeland I. Sequential extraction of gel-forming proteins, collagen and collagen hydrolysate from gutted silver carp (Hypophthalmichthys molitrix), a biorefinery approach. Food Chem. 2018;242:568–578. doi:10.1016/j.foodchem.2017.09.045. [PubMed] [CrossRef] [Google Scholar]

72. Kezwoń A., Chromińska I., Frączyk T., Wojciechowski K. Effect of enzymatic hydrolysis on surface activity and surface rheology of type I collagen. Colloids Surf. B: Biointerfaces. 2016;137:60–69. [PubMed] [Google Scholar]

73. Wang J., Luo D., Liang M., Zhang T., Yin X., Zhang Y., Yang X., Liu W. Spectrum-effect relationships between high-performance liquid chromatography (HPLC) fingerprints and the antioxidant and anti-inflammatory activities of collagen peptides. Molecules. 2018;23:3257. doi:10.3390/molecules23123257. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

74. Wang L., Jiang Y., Wang X., Zhou J., Cui H., Xu W., He Y., Ma H., Gao R. Effect of oral administration of collagen hydrolysates from Nile tilapia on the chronologically aged skin. J. Funct. Foods. 2018;44:112–117. doi:10.1016/j.jff.2018.03.005. [CrossRef] [Google Scholar]

75. Ramadass S.K., Perumal S., Gopinath A., Nisal A., Subramanian S., Madhan B. Sol–gel assisted fabrication of collagen hydrolysate composite scaffold: A novel therapeutic alternative to the traditional collagen scaffold. Acs Appl. Mater. Interfaces. 2014;6:15015–15025. doi:10.1021/am502948g. [PubMed] [CrossRef] [Google Scholar]

76. Sibilla S., Godfrey M., Brewer S., Budh-Raja A., Genovese L. An overview of the beneficial effects of hydrolysed collagen as a nutraceutical on skin properties: Scientific background and clinical studies. Open Nutraceuticals J. 2015;8:29–42. doi:10.2174/1876396001508010029. [CrossRef] [Google Scholar]

77. Denis A., Brambati N., Dessauvages B., Guedj S., Ridoux C., Meffre N., Autier C. Molecular weight determination of hydrolyzed collagens. Food Hydrocoll. 2008;22:989–994. doi:10.1016/j.foodhyd.2007.05.016. [CrossRef] [Google Scholar]

78. Najafian L., Babji A.S. A review of fish-derived antioxidant and antimicrobial peptides: Their production, assessment, and applications. Peptides. 2012;33:178–185. doi:10.1016/j.peptides.2011.11.013. [PubMed] [CrossRef] [Google Scholar]

79. Santana R.C., Perrechil F.A., Sato A.C.K., Cunha R.L. Emulsifying properties of collagen fibers: Effect of pH, protein concentration and hom*ogenization pressure. Food Hydrocoll. 2011;25:604–612. doi:10.1016/j.foodhyd.2010.07.018. [CrossRef] [Google Scholar]

80. Guo L., Harnedy P.A., Zhang L., Li B., Zhang Z., Hou H., Zhao X., FitzGerald R.J. In vitro assessment of the multifunctional bioactive potential of Alaska pollock skin collagen following simulated gastrointestinal digestion. J. Sci. Food Agric. 2015;95:1514–1520. doi:10.1002/jsfa.6854. [PubMed] [CrossRef] [Google Scholar]

81. Pal G.K., Suresh P.V. Sustainable valorisation of seafood by-products: Recovery of collagen and development of collagen-based novel functional food ingredients. Innov. Food Sci. Emerg. Technol. 2016;37:201–215. doi:10.1016/j.ifset.2016.03.015. [CrossRef] [Google Scholar]

82. Pei X., Yang R., Zhang Z., Gao L., Wang J., Xu Y., Zhao M., Han X., Liu Z., Li Y. Marine collagen peptide isolated from Chum Salmon (Oncorhynchus keta) skin facilitates learning and memory in aged C57BL/6J mice. Food Chem. 2010;118:333–340. doi:10.1016/j.foodchem.2009.04.120. [CrossRef] [Google Scholar]

83. Wang J., Pei X., Liu H., Zhou D. Extraction and characterization of acid-soluble and pepsin-soluble collagen from skin of loach (Misgurnus anguillicaudatus) Int. J. Biol. Macromol. 2018;106:544–550. doi:10.1016/j.ijbiomac.2017.08.046. [PubMed] [CrossRef] [Google Scholar]

84. Chi C., Hu F., Li Z., Wang B., Luo H. Influence of different hydrolysis processes by trypsin on the physicochemical, antioxidant, and functional properties of collagen hydrolysates from Sphyrna lewini, Dasyatis akjei, and Raja porosa. J. Aquat. Food Prod. Technol. 2016;25:616–632. doi:10.1080/10498850.2014.898004. [CrossRef] [Google Scholar]

85. Zhang Y., Olsen K., Grossi A., Otte J. Effect of pretreatment on enzymatic hydrolysis of bovine collagen and formation of ACE-inhibitory peptides. Food Chem. 2013;141:2343–2354. doi:10.1016/j.foodchem.2013.05.058. [PubMed] [CrossRef] [Google Scholar]

86. Lima C.A., Campos J.F., Lima Filho J.L., Converti A., da Cunha M.G.C., Porto A.L. Antimicrobial and radical scavenging properties of bovine collagen hydrolysates produced by Penicillium aurantiogriseum URM 4622 collagenase. J. Food Sci. Technol. 2015;52:4459–4466. doi:10.1007/s13197-014-1463-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

87. O’Sullivan S.M., Lafarga T., Hayes M., O’Brien N.M. Bioactivity of bovine lung hydrolysates prepared using papain, pepsin, and Alcalase. J. Food Biochem. 2017;41:e12406. doi:10.1111/jfbc.12406. [CrossRef] [Google Scholar]

88. Fu Y., Young J.F., Løkke M.M., Lametsch R., Aluko R.E., Therkildsen M. Revalorisation of bovine collagen as a potential precursor of angiotensin I-converting enzyme (ACE) inhibitory peptides based on in silico and in vitro protein digestions. J. Funct. Foods. 2016;24:196–206. doi:10.1016/j.jff.2016.03.026. [CrossRef] [Google Scholar]

89. Choi D., Min S.G., Jo Y.J. Functionality of porcine skin hydrolysates produced by hydrothermal processing for liposomal delivery system. J. Food Biochem. 2018;42:e12464. doi:10.1111/jfbc.12464. [CrossRef] [Google Scholar]

90. O’Keeffe M.B., Norris R., Alashi M.A., Aluko R.E., FitzGerald R.J. Peptide identification in a porcine gelatin prolyl endoproteinase hydrolysate with angiotensin converting enzyme (ACE) inhibitory and hypotensive activity. J. Funct. Foods. 2017;34:77–88. doi:10.1016/j.jff.2017.04.018. [CrossRef] [Google Scholar]

91. Yazaki M., Ito Y., Yamada M., Goulas S., Teramoto S., Nakaya M.-a., Ohno S., Yamaguchi K. Oral ingestion of collagen hydrolysate leads to the transportation of highly concentrated Gly-Pro-Hyp and its hydrolyzed form of Pro-Hyp into the bloodstream and skin. J. Agric. Food Chem. 2017;65:2315–2322. doi:10.1021/acs.jafc.6b05679. [PubMed] [CrossRef] [Google Scholar]

92. Min S.-G., Jo Y.-J., Park S.H. Potential application of static hydrothermal processing to produce the protein hydrolysates from porcine skin by-products. Lwt-Food Sci. Technol. 2017;83:18–25. doi:10.1016/j.lwt.2017.04.073. [CrossRef] [Google Scholar]

93. Dandagi G.L., Byahatti S.M. An insight into the swine-influenza A (H1N1) virus infection in humans. Lung India. 2011;28:34–38. doi:10.4103/0970-2113.76299. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

94. Bradley R. Bovine spongiform encephalopathy (BSE): The current situation and research. Eur. J. Epidemiol. 1991;7:532–544. doi:10.1007/BF00143136. [PubMed] [CrossRef] [Google Scholar]

95. Regenstein J.M., Chaudry M.M., Regenstein C.E. The kosher and halal food laws. Compr. Rev. Food Sci. Food Saf. 2003;2:111–127. doi:10.1111/j.1541-4337.2003.tb00018.x. [PubMed] [CrossRef] [Google Scholar]

96. Felician F.F., Xia C., Qi W., Xu H. Collagen from marine biological sources and medical applications. Chem. Biodivers. 2018;15:e1700557. doi:10.1002/cbdv.201700557. [PubMed] [CrossRef] [Google Scholar]

97. Pati F., Adhikari B., Dhara S. Isolation and characterization of fish scale collagen of higher thermal stability. Bioresour. Technol. 2010;101:3737–3742. doi:10.1016/j.biortech.2009.12.133. [PubMed] [CrossRef] [Google Scholar]

98. Sanchez A., Blanco M., Correa B., Perez-Martin R., Sotelo C. Effect of fish collagen hydrolysates on type I collagen mRNA levels of human dermal fibroblast culture. Mar. Drugs. 2018;16:144. doi:10.3390/md16050144. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

99. Chen J., Li L., Yi R., Gao R., He J. Release kinetics of Tilapia scale collagen I peptides during tryptic hydrolysis. Food Hydrocoll. 2018;77:931–936. doi:10.1016/j.foodhyd.2017.11.040. [CrossRef] [Google Scholar]

100. Das J., Dey P., Chakraborty T., Saleem K., Nagendra R., Banerjee P. Utilization of marine industry waste derived collagen hydrolysate as peroxide inhibition agents in lipid-based food. J. Food Process. Preserv. 2018;42:e13430. doi:10.1111/jfpp.13430. [CrossRef] [Google Scholar]

101. Villamil O., Váquiro H., Solanilla J.F. Fish viscera protein hydrolysates: Production, potential applications and functional and bioactive properties. Food Chem. 2017;224:160–171. doi:10.1016/j.foodchem.2016.12.057. [PubMed] [CrossRef] [Google Scholar]

102. Ahmed R., Chun B.-S. Subcritical water hydrolysis for the production of bioactive peptides from tuna skin collagen. J. Supercrit. Fluids. 2018;141:88–96. doi:10.1016/j.supflu.2018.03.006. [CrossRef] [Google Scholar]

103. Sabeena Farvin K.H., Andersen L.L., Otte J., Nielsen H.H., Jessen F., Jacobsen C. Antioxidant activity of cod (Gadus morhua) protein hydrolysates: Fractionation and characterisation of peptide fractions. Food Chem. 2016;204:409–419. doi:10.1016/j.foodchem.2016.02.145. [PubMed] [CrossRef] [Google Scholar]

104. Liu C., Ma X., Che S., Wang C., Li B. The effect of hydrolysis with neutrase on molecular weight, functional properties, and antioxidant activities of Alaska pollock protein isolate. J. Ocean. Univ. China. 2018;17:1423–1431. doi:10.1007/s11802-018-3649-9. [CrossRef] [Google Scholar]

105. Tao J., Zhao Y.-Q., Chi C.-F., Wang B. Bioactive peptides from cartilage protein hydrolysate of spotless smoothhound and their antioxidant activity in vitro. Mar. Drugs. 2018;16:100. doi:10.3390/md16040100. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

106. Saiga A., Iwai K., Hayakawa T., Takahata Y., Kitamura S., Nishimura T., Morimatsu F. Angiotensin I-converting enzyme-inhibitory peptides obtained from chicken collagen hydrolysate. J. Agric. Food Chem. 2008;56:9586–9591. doi:10.1021/jf072669w. [PubMed] [CrossRef] [Google Scholar]

107. Zhao Y., Wang Z., Zhang J., Su T. Extraction and characterization of collagen hydrolysates from the skin of Rana chensinensis. 3 Biotech. 2018;8:181. doi:10.1007/s13205-018-1198-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

108. Dhakal D., Koomsap P., Lamichhane A., Sadiq M.B., Anal A.K. Optimization of collagen extraction from chicken feet by papain hydrolysis and synthesis of chicken feet collagen based biopolymeric fibres. Food Biosci. 2018;23:23–30. doi:10.1016/j.fbio.2018.03.003. [CrossRef] [Google Scholar]

109. Soladoye O.P., Saldo J., Peiro L., Rovira A., Mor-Mur M. Antioxidant and angiotensin 1 converting enzyme inhibitory functions from chicken collagen hydrolysates. J. Nutr. Food Sci. 2015;5:1–9. doi:10.4172/2155-9600.1000369. [CrossRef] [Google Scholar]

110. Venkatesan J., Anil S., Kim S.-K., Shim M. Marine fish proteins and peptides for cosmeceuticals: A review. Mar. Drugs. 2017;15:143. doi:10.3390/md15050143. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

111. Hashim P., Sofberi M., Ridzwan M., Bakar J., Mat Hashim D. Collagen in food and beverage industries. Int. Food Res. J. 2015;22:1–8. [Google Scholar]

112. Varani J., Dame M.K., Rittie L., Fligiel S.E.G., Kang S., Fisher G.J., Voorhees J.J. Decreased collagen production in chronologically aged skin: Roles of age-dependent alteration in fibroblast function and defective mechanical stimulation. Am. J. Pathol. 2006;168:1861–1868. doi:10.2353/ajpath.2006.051302. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

113. Baumann L. Skin ageing and its treatment. J. Pathol. 2007;211:241–251. doi:10.1002/path.2098. [PubMed] [CrossRef] [Google Scholar]

114. Hays N.P., Kim H., Wells A.M., Kajkenova O., Evans W.J. Effects of whey and fortified collagen hydrolysate protein supplements on nitrogen balance and body composition in older women. J. Am. Diet. Assoc. 2009;109:1082–1087. doi:10.1016/j.jada.2009.03.003. [PubMed] [CrossRef] [Google Scholar]

115. Zorrilla García A.E. El envejecimiento y el estrés oxidativo. Rev. Cuba. De Investig. Biomédicas. 2002;21:178–185. [Google Scholar]

116. Zouboulis C.C., Makrantonaki E. Clinical aspects and molecular diagnostics of skin aging. Clin. Dermatol. 2011;29:3–14. doi:10.1016/j.clindermatol.2010.07.001. [PubMed] [CrossRef] [Google Scholar]

117. Kim D.-U., Chung H.-C., Choi J., Sakai Y., Lee B.-Y. Oral intake of low-molecular-weight collagen peptide improves hydration, elasticity, and wrinkling in human skin: A randomized, double-blind, placebo-controlled study. Nutrients. 2018;10:826. doi:10.3390/nu10070826. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

118. Tobin D.J. Introduction to skin aging. J. Tissue Viability. 2017;26:37–46. doi:10.1016/j.jtv.2016.03.002. [PubMed] [CrossRef] [Google Scholar]

119. Czajka A., Kania E.M., Genovese L., Corbo A., Merone G., Luci C., Sibilla S. Daily oral supplementation with collagen peptides combined with vitamins and other bioactive compounds improves skin elasticity and has a beneficial effect on joint and general wellbeing. Nutr. Res. 2018;57:97–108. doi:10.1016/j.nutres.2018.06.001. [PubMed] [CrossRef] [Google Scholar]

120. Haydont V., Bernard B.A., Fortunel N.O. Age-related evolutions of the dermis: Clinical signs, fibroblast and extracellular matrix dynamics. Mech. Ageing Dev. 2019;177:150–156. doi:10.1016/j.mad.2018.03.006. [PubMed] [CrossRef] [Google Scholar]

121. Chen Y.-P., Wu H.-T., Wang G.-H., Liang C.-H. Improvement of Skin Condition on Skin Moisture and Anti-Melanogenesis by Collagen Peptides from Milkfish (Chanos chanos) Scales. Materials Science and Engineering; Nanjing, China: 2018. pp. 1–7. (IOP Conference Series). [Google Scholar]

122. Jhawar N., Wang J.V., Saedi N. Oral collagen supplementation for skin aging: A fad or the future? J. Cosmet. Dermatol. 2019 doi:10.1111/jocd.13096. [PubMed] [CrossRef] [Google Scholar]

123. Bolke L., Schlippe G., Gerß J., Voss W. A collagen supplement improves skin hydration, elasticity, roughness, and density: Results of a randomized, placebo-controlled, blind study. Nutrients. 2019;11:2494. doi:10.3390/nu11102494. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

124. Addor F.A.S., Cotta Vieira J., Abreu Melo C.S. Improvement of dermal parameters in aged skin after oral use of a nutrient supplement. Clin. Cosmet. Investig. Dermatol. 2018;11:195–201. doi:10.2147/CCID.S150269. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

125. Asserin J., Lati E., Shioya T., Prawitt J. The effect of oral collagen peptide supplementation on skin moisture and the dermal collagen network: Evidence from an ex vivo model and randomized, placebo-controlled clinical trials. J. Cosmet. Dermatol. 2015;14:291–301. doi:10.1111/jocd.12174. [PubMed] [CrossRef] [Google Scholar]

126. Maia Campos P.M., Melo M.O., Siqueira César F.C. Topical application and oral supplementation of peptides in the improvement of skin viscoelasticity and density. J. Cosmet. Dermatol. 2019 doi:10.1111/jocd.12893. [PubMed] [CrossRef] [Google Scholar]

127. Koizumi S., Inoue N., Shimizu M., Kwon C.-j., Kim H.-y., Park K.S. Effects of dietary supplementation with fish scales-derived collagen peptides on skin parameters and condition: A randomized, placebo-controlled, double-blind study. Int. J. Pept. Res. Ther. 2018;24:397–402. doi:10.1007/s10989-017-9626-0. [CrossRef] [Google Scholar]

128. Wang W., Chen M., Wu J., Wang S. Hypothermia protection effect of antifreeze peptides from pigskin collagen on freeze-dried Streptococcus thermophiles and its possible action mechanism. Lwt-Food Sci. Technol. 2015;63:878–885. doi:10.1016/j.lwt.2015.04.007. [CrossRef] [Google Scholar]

129. Sousa S.C., Fragoso S.P., Penna C.R.A., Arcanjo N.M.O., Silva F.A.P., Ferreira V.C.S., Barreto M.D.S., Araújo Í.B.S. Quality parameters of frankfurter-type sausages with partial replacement of fat by hydrolyzed collagen. Lwt-Food Sci. Technol. 2017;76:320–325. doi:10.1016/j.lwt.2016.06.034. [CrossRef] [Google Scholar]

130. Ibrahim F.N., Ismail-Fitry M.R., Yusoff M.M., Shukri R. Effects of Fish Collagen Hydrolysate (FCH) as fat replacer in the production of buffalo patties. J. Adv. Res. Appl. Sci. Eng. Technol. 2018;11:108–117. [Google Scholar]

131. Prestes R.C., Carneiro E.B.B., Demiate I.M. Hydrolyzed collagen, modified starch and guar gum addition in turkey ham. Ciência Rural. 2012;42:1307–1313. doi:10.1590/S0103-84782012005000037. [CrossRef] [Google Scholar]

132. Gerhardt Â., Monteiro B.W., Gennari A., Lehn D.N., Souza C.F.V.d. Características físico-químicas e sensoriais de bebidas lácteas fermentadas utilizando soro de ricota e colágeno hidrolisado. Physicochemical and sensory characteristics of fermented dairy drink using ricotta cheese whey and hydrolyzed collagen. Rev. Do Inst. De Laticínios Cândido Tostes. 2013;68:41–50. doi:10.5935/2238-6416.20130007. [CrossRef] [Google Scholar]

133. Da Mata Rigoto J., Ribeiro T.H.S., Stevanato N., Sampaio A.R., Ruiz S.P., Bolanho B.C. Effect of açaí pulp, cheese whey, and hydrolysate collagen on the characteristics of dairy beverages containing probiotic bacteria. J. Food Process. Eng. 2019;42:e12953. doi:10.1111/jfpe.12953. [CrossRef] [Google Scholar]

134. Benjakul S., Chantakun K., Karnjanapratum S. Impact of retort process on characteristics and bioactivities of herbal soup based on hydrolyzed collagen from seabass skin. J. Food Sci. Technol. 2018;55:3779–3791. doi:10.1007/s13197-018-3310-z. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

135. Zhang Q.-X., Fu R.-J., Yao K., Jia D.-Y., He Q., Chi Y.-L. Clarification effect of collagen hydrolysate clarifier on chrysanthemum beverage. LWT. 2018;91:70–76. doi:10.1016/j.lwt.2018.01.041. [CrossRef] [Google Scholar]

136. Fu R., Yao K., Zhang Q., Jia D., Zhao J., Chi Y. Collagen hydrolysates of skin shavings prepared by enzymatic hydrolysis as a natural flocculant and their flocculating property. Appl. Biochem. Biotechnol. 2017;182:55–66. doi:10.1007/s12010-016-2310-6. [PubMed] [CrossRef] [Google Scholar]

137. Ramshaw J.A. Biomedical applications of collagens. J. Biomed. Mater. Res. Part B: Appl. Biomater. 2016;104:665–675. doi:10.1002/jbm.b.33541. [PubMed] [CrossRef] [Google Scholar]

138. Zeugolis D.I., Paul R.G., Attenburrow G. Factors influencing the properties of reconstituted collagen fibers prior to self-assembly: Animal species and collagen extraction method. J. Biomed. Mater. Res. Part. A. 2008;86:892–904. doi:10.1002/jbm.a.31694. [PubMed] [CrossRef] [Google Scholar]

139. Pei Y., Yang J., Liu P., Xu M., Zhang X., Zhang L. Fabrication, properties and bioapplications of cellulose/collagen hydrolysate composite films. Carbohydr. Polym. 2013;92:1752–1760. doi:10.1016/j.carbpol.2012.11.029. [PubMed] [CrossRef] [Google Scholar]

140. Ficai A., Albu M.G., Birsan M., Sonmez M., Ficai D., Trandafir V., Andronescu E. Collagen hydrolysate based collagen/hydroxyapatite composite materials. J. Mol. Struct. 2013;1037:154–159. doi:10.1016/j.molstruc.2012.12.052. [CrossRef] [Google Scholar]

141. Ocak B. Film-forming ability of collagen hydrolysate extracted from leather solid wastes with chitosan. Environ. Sci. Pollut. Res. 2018;25:4643–4655. doi:10.1007/s11356-017-0843-z. [PubMed] [CrossRef] [Google Scholar]

142. Noppakundilograt S., Choopromkaw S., Kiatkamjornwong S. Hydrolyzed collagen-grafted-poly [(acrylic acid)-co-(methacrylic acid)] hydrogel for drug delivery. J. Appl. Polym. Sci. 2018;135:45654. doi:10.1002/app.45654. [CrossRef] [Google Scholar]

143. Ouyang Q.-Q., Hu Z., Lin Z.-P., Quan W.-Y., Deng Y.-F., Li S.-D., Li P.-W., Chen Y. Chitosan hydrogel in combination with marine peptides from tilapia for burns healing. Int. J. Biol. Macromol. 2018;112:1191–1198. doi:10.1016/j.ijbiomac.2018.01.217. [PubMed] [CrossRef] [Google Scholar]

144. Ramadass S.K., Nazir L.S., Thangam R., Perumal R.K., Manjubala I., Madhan B., Seetharaman S. Type I collagen peptides and nitric oxide releasing electrospun silk fibroin scaffold: A multifunctional approach for the treatment of ischemic chronic wounds. Colloids Surf. B: Biointerfaces. 2019;175:636–643. doi:10.1016/j.colsurfb.2018.12.025. [PubMed] [CrossRef] [Google Scholar]

145. Sontakke S.B., Jung J.-h., Piao Z., Chung H.J. Orally available collagen tripeptide: Enzymatic stability, intestinal permeability, and absorption of Gly-Pro-Hyp and Pro-Hyp. J. Agric. Food Chem. 2016;64:7127–7133. doi:10.1021/acs.jafc.6b02955. [PubMed] [CrossRef] [Google Scholar]

Hydrolyzed Collagen—Sources and Applications (2024)
Top Articles
How to Store Bananas So They Don't Turn Brown
Foodsmart Nutrition & Dietitian Advice Blog | Healthy Habits
2018 Jeep Wrangler Unlimited All New for sale - Portland, OR - craigslist
Minooka Channahon Patch
Palm Coast Permits Online
Wizard Build Season 28
Www.politicser.com Pepperboy News
Free Atm For Emerald Card Near Me
Truist Park Section 135
Lantana Blocc Compton Crips
Nichole Monskey
Select Truck Greensboro
fltimes.com | Finger Lakes Times
Knaben Pirate Download
What Is Njvpdi
Craigslist Pets Southern Md
454 Cu In Liters
Shemal Cartoon
UEQ - User Experience Questionnaire: UX Testing schnell und einfach
Wgu Admissions Login
iLuv Aud Click: Tragbarer Wi-Fi-Lautsprecher für Amazons Alexa - Portable Echo Alternative
Webcentral Cuny
Promiseb Discontinued
Today Was A Good Day With Lyrics
F45 Training O'fallon Il Photos
Wiseloan Login
Hannah Palmer Listal
Parkeren Emmen | Reserveren vanaf €9,25 per dag | Q-Park
Piedmont Healthstream Sign In
Albert Einstein Sdn 2023
Wat is een hickmann?
What Sells at Flea Markets: 20 Profitable Items
Nikki Catsouras: The Tragic Story Behind The Face And Body Images
Kamzz Llc
Khatrimmaza
Emily Katherine Correro
Fox And Friends Mega Morning Deals July 2022
Lucky Larry's Latina's
Best Weapons For Psyker Darktide
House Of Budz Michigan
Aveda Caramel Toner Formula
Jason Brewer Leaving Fox 25
Sam's Club Gas Prices Deptford Nj
Sept Month Weather
Tricare Dermatologists Near Me
Okta Hendrick Login
M Life Insider
Inside the Bestselling Medical Mystery 'Hidden Valley Road'
Southern Blotting: Principle, Steps, Applications | Microbe Online
Syrie Funeral Home Obituary
Obituary Roger Schaefer Update 2020
Noaa Duluth Mn
Latest Posts
Article information

Author: Sen. Emmett Berge

Last Updated:

Views: 5952

Rating: 5 / 5 (80 voted)

Reviews: 95% of readers found this page helpful

Author information

Name: Sen. Emmett Berge

Birthday: 1993-06-17

Address: 787 Elvis Divide, Port Brice, OH 24507-6802

Phone: +9779049645255

Job: Senior Healthcare Specialist

Hobby: Cycling, Model building, Kitesurfing, Origami, Lapidary, Dance, Basketball

Introduction: My name is Sen. Emmett Berge, I am a funny, vast, charming, courageous, enthusiastic, jolly, famous person who loves writing and wants to share my knowledge and understanding with you.