Dietary Sources and Bioactivities of Melatonin (2024)

1. Lerner A.B., Case J.D., Takahashi Y., Lee T.H., Mori W. Isolation of melatonin, a pineal factor that lightens melanocytes. J. Am. Chem. Soc. 1958;80:2587. doi:10.1021/ja01543a060. [CrossRef] [Google Scholar]

2. Brown G.M., Pandi-Perumal S.R., Trakht I., Cardinali D.P. Melatonin and its relevance to jet lag. Travel Med. Infect. Dis. 2009;7:69–81. doi:10.1016/j.tmaid.2008.09.004. [PubMed] [CrossRef] [Google Scholar]

3. Pandi-Perumal S.R., Srinivasan V., Poeggeler B., Hardeland R., Cardinali D.P. Drug Insight: The use of melatonergic agonists for the treatment of insomnia-focus on ramelteon. Nat. Clin. Pract. Neurol. 2007;3:221–228. doi:10.1038/ncpneuro0467. [PubMed] [CrossRef] [Google Scholar]

4. Li R., Luo X., Li L., Peng Q., Yang Y., Zhao L., Ma M., Hou Z. The protective effects of melatonin against oxidative stress and inflammation induced by acute cadmium exposure in mice testis. Biol. Trace Elem. Res. 2016;170:152–164. doi:10.1007/s12011-015-0449-6. [PubMed] [CrossRef] [Google Scholar]

5. Chen S.J., Huang S.H., Chen J.W., Wang K.C., Yang Y.R., Liu P.F., Lin G.J., Sytwu H.K. Melatonin enhances interleukin-10 expression and suppresses chemotaxis to inhibit inflammation in situ and reduce the severity of experimental autoimmune encephalomyelitis. Int. Immunopharmacol. 2016;31:169–177. doi:10.1016/j.intimp.2015.12.020. [PubMed] [CrossRef] [Google Scholar]

6. Oxenkrug G., Requintina P., Bachurin S. Antioxidant and antiaging activity of N-acetylserotonin and melatonin in the in vivo models. Ann. N. Y. Acad. Sci. 2001;939:190–199. doi:10.1111/j.1749-6632.2001.tb03626.x. [PubMed] [CrossRef] [Google Scholar]

7. Li F., Li S., Li H.B., Deng G.F., Ling W.H., Wu S., Xu X.R., Chen F. Antiproliferative activity of peels, pulps and seeds of 61 fruits. J. Funct. Foods. 2013;5:1298–1309. doi:10.1016/j.jff.2013.04.016. [CrossRef] [Google Scholar]

8. Anisimov V.N., Popovich I.G., Zabezhinski M.A., Anisimov S.V., Vesnushkin G.M., Vinogradova I.A. Melatonin as antioxidant, geroprotector and anticarcinogen. Biochim. Biophys. Acta. 2006;1757:573–589. doi:10.1016/j.bbabio.2006.03.012. [PubMed] [CrossRef] [Google Scholar]

9. Pandi-Perumal S.R., BaHammam A.S., Brown G.M., Spence D.W., Bharti V.K., Kaur C., Hardeland R., Cardinali D.P. Melatonin antioxidative defense: Therapeutical implications for aging and neurodegenerative processes. Neurotox. Res. 2013;23:267–300. doi:10.1007/s12640-012-9337-4. [PubMed] [CrossRef] [Google Scholar]

10. Pandi-Perumal S.R., Zisapel N., Srinivasan V., Cardinali D.P. Melatonin and sleep in aging population. Exp. Gerontol. 2005;40:911–925. doi:10.1016/j.exger.2005.08.009. [PubMed] [CrossRef] [Google Scholar]

11. Agil A., Elmahallawy E.K., Rodriguez-Ferrer J.M., Adem A., Bastaki S.M., Al-Abbadi I., Fino Solano Y.A., Navarro-Alarcon M. Melatonin increases intracellular calcium in the liver, muscle, white adipose tissues and pancreas of diabetic obese rats. Food Funct. 2015;6:2671–2678. doi:10.1039/C5FO00590F. [PubMed] [CrossRef] [Google Scholar]

12. Agil A., El-Hammadi M., Jimenez-Aranda A., Tassi M., Abdo W., Fernandez-Vazquez G., Reiter R.J. Melatonin reduces hepatic mitochondrial dysfunction in diabetic obese rats. J. Pineal Res. 2015;59:70–79. doi:10.1111/jpi.12241. [PubMed] [CrossRef] [Google Scholar]

13. Chenevard R., Suter Y., Erne P. Effects of the heart-lung machine on melatonin metabolism and mood disturbances. Eur. J. Cardiothorac. Surg. 2008;34:338–343. doi:10.1016/j.ejcts.2008.03.035. [PubMed] [CrossRef] [Google Scholar]

14. Esquifino A.I., Villanua M.A., Agrasal C. Effect of neonatal melatonin administration on sexual development in the rat. J. Steroid Biochem. 1987;27:1089–1093. doi:10.1016/0022-4731(87)90194-4. [PubMed] [CrossRef] [Google Scholar]

15. Agilli M., Aydin F.N., Cayci T. The effect of body temperature, melatonin and cortisol on obesity in women: A biochemical evaluation? Clin. Nutr. 2015;34:332. doi:10.1016/j.clnu.2015.01.006. [PubMed] [CrossRef] [Google Scholar]

16. Najeeb S., Khurshid Z., Zohaib S., Zafar M.S. Therapeutic potential of melatonin in oral medicine and periodontology. Kaohsiung J. Med. Sci. 2016;32:391–396. doi:10.1016/j.kjms.2016.06.005. [PubMed] [CrossRef] [Google Scholar]

17. Setyaningsih W., Saputro I.E., Barbero G.F., Palma M., Garcia Barroso C. Determination of melatonin in rice (Oryza sativa) grains by pressurized liquid extraction. J. Agric. Food Chem. 2015;63:1107–1115. doi:10.1021/jf505106m. [PubMed] [CrossRef] [Google Scholar]

18. Escriva L., Manyes L., Barbera M., Martinez-Torres D., Meca G. Determination of melatonin in Acyrthosiphon pisum aphids by liquid chromatography-tandem mass spectrometry. J. Insect Physiol. 2016;86:48–53. doi:10.1016/j.jinsphys.2016.01.003. [PubMed] [CrossRef] [Google Scholar]

19. Muszynska B., Sulkowska-Ziaja K. Analysis of indole compounds in edible Basidiomycota species after thermal processing. Food Chem. 2012;132:455–459. doi:10.1016/j.foodchem.2011.11.021. [PubMed] [CrossRef] [Google Scholar]

20. Yilmaz C., Kocadagli T., Gokmen V. Formation of melatonin and its isomer during bread dough fermentation and effect of baking. J. Agric. Food Chem. 2014;62:2900–2905. doi:10.1021/jf500294b. [PubMed] [CrossRef] [Google Scholar]

21. Reiter R.J., Tan D.X. Melatonin: An antioxidant in edible plants. Ann. N. Y. Acad. Sci. 2002;957:341–344. doi:10.1111/j.1749-6632.2002.tb02938.x. [PubMed] [CrossRef] [Google Scholar]

22. Tan D.X., Zanghi B.M., Manchester L.C., Reiter R.J. Melatonin identified in meats and other food stuffs: Potentially nutritional impact. J. Pineal Res. 2014;57:213–218. doi:10.1111/jpi.12152. [PubMed] [CrossRef] [Google Scholar]

23. Aguilera Y., Herrera T., Benitez V., Arribas S.M., Lopez De Pablo A.L., Esteban R.M., Martin-Cabrejas M.A. Estimation of scavenging capacity of melatonin and other antioxidants: Contribution and evaluation in germinated seeds. Food Chem. 2015;170:203–211. doi:10.1016/j.foodchem.2014.08.071. [PubMed] [CrossRef] [Google Scholar]

24. Sae-Teaw M., Johns J., Johns N.P., Subongkot S. Serum melatonin levels and antioxidant capacities after consumption of pineapple, orange, or banana by healthy male volunteers. J. Pineal Res. 2013;55:58–64. doi:10.1111/jpi.12025. [PubMed] [CrossRef] [Google Scholar]

25. Delgado J., Terron M.P., Garrido M., Pariente J.A., Barriga C., Rodriguez A.B., Paredes S.D. Diets enriched with a Jerte Valley cherry-based nutraceutical product reinforce nocturnal behaviour in young and old animals of nocturnal (Rattus norvegicus) and diurnal (Streptopelia risoria) chronotypes. J. Anim. Physiol. Anim. Nutr. 2013;97:137–145. doi:10.1111/j.1439-0396.2011.01251.x. [PubMed] [CrossRef] [Google Scholar]

26. Iriti M., Faoro F. Grape phytochemicals: A bouquet of old and new nutraceuticals for human health. Med. Hypotheses. 2006;67:833–838. doi:10.1016/j.mehy.2006.03.049. [PubMed] [CrossRef] [Google Scholar]

27. Ferrari C.K. Functional foods, herbs and nutraceuticals: Towards biochemical mechanisms of healthy aging. Biogerontology. 2004;5:275–289. doi:10.1007/s10522-004-2566-z. [PubMed] [CrossRef] [Google Scholar]

28. Oladi E., Mohamadi M., Shamspur T., Mostafavi A. Spectrofluorimetric determination of melatonin in kernels of four different Pistacia varieties after ultrasound-assisted solid-liquid extraction. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014;132:326–329. doi:10.1016/j.saa.2014.05.010. [PubMed] [CrossRef] [Google Scholar]

29. Murch S.J., Simmons C.B., Saxena P.K. Melatonin in feverfew and other medicinal plants. Lancet. 1997;350:1598–1599. doi:10.1016/S0140-6736(05)64014-7. [PubMed] [CrossRef] [Google Scholar]

30. González-Gómez D., Lozano M., Fernández-León M.F., Ayuso M.C., Bernalte M.J., Rodríguez A.B. Detection and quantification of melatonin and serotonin in eight Sweet Cherry cultivars (Prunus avium L.) Eur. Food Res. Technol. 2009;229:223–229. doi:10.1007/s00217-009-1042-z. [CrossRef] [Google Scholar]

31. Wang J., Liang C., Li S., Zheng J. Study on analysis method of melatonin and melatonin content in corn & rice seeds. Chin. Agric. Sci. Bull. 2009;25:20–24. [Google Scholar]

32. Hernandez-Ruiz J., Arnao M.B. Distribution of melatonin in different zones of lupin and barley plants at different ages in the presence and absence of light. J. Agric. Food Chem. 2008;56:10567–10573. doi:10.1021/jf8022063. [PubMed] [CrossRef] [Google Scholar]

33. Reiter R.J., Tan D.X., Burkhardt S., Manchester L.C. Melatonin in plants. Nutr. Rev. 2001;59:286–290. doi:10.1111/j.1753-4887.2001.tb07018.x. [PubMed] [CrossRef] [Google Scholar]

34. Hardeland R., Pandi-Perumal S.R., Cardinali D.P. Melatonin. Int. J. Biochem. Cell Biol. 2006;38:313–316. doi:10.1016/j.biocel.2005.08.020. [PubMed] [CrossRef] [Google Scholar]

35. Iriti M., Rossoni M., Faoro F. Melatonin content in grape: Myth or panacea. J. Sci. Food Agric. 2006;86:1432–1438. doi:10.1002/jsfa.2537. [CrossRef] [Google Scholar]

36. Wang C., Yin L.Y., Shi X.Y., Xiao H., Kang K., Liu X.Y., Zhan J.C., Huang W.D. Effect of cultivar, temperature, and environmental conditions on the dynamic change of melatonin in mulberry fruit development and wine fermentation. J. Food Sci. 2016;81:M958–M967. doi:10.1111/1750-3841.13263. [PubMed] [CrossRef] [Google Scholar]

37. Karunanithi D., Radhakrishna A., Sivaraman K.P., Biju V.M. Quantitative determination of melatonin in milk by LC-MS/MS. J. Food Sci. Technol. 2014;51:805–812. doi:10.1007/s13197-013-1221-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

38. Milagres M.P., Minim V.P., Minim L.A., Simiqueli A.A., Moraes L.E., Martino H.S. Night milking adds value to cow’s milk. J. Sci. Food Agric. 2014;94:1688–1692. doi:10.1002/jsfa.6480. [PubMed] [CrossRef] [Google Scholar]

39. Berthelot X., Laurentie M., Ravault J.P., Ferney J., Toutain P.L. Circadian profile and production rate of melatonin in the cow. Domest. Anim. Endocrinol. 1990;7:315–322. doi:10.1016/0739-7240(90)90037-Z. [PubMed] [CrossRef] [Google Scholar]

40. Kennaway D.J., Stamp G.E., Goble F.C. Development of melatonin production in infants and the impact of prematurity. J. Clin. Endocrinol. Metab. 1992;75:367–369. doi:10.1210/jc.75.2.367. [PubMed] [CrossRef] [Google Scholar]

41. Cohen Engler A., Hadash A., Shehadeh N., Pillar G. Breastfeeding may improve nocturnal sleep and reduce infantile colic: Potential role of breast milk melatonin. Eur. J. Pediatr. 2012;171:729–732. doi:10.1007/s00431-011-1659-3. [PubMed] [CrossRef] [Google Scholar]

42. Kocadagli T., Yilmaz C., Gokmen V. Determination of melatonin and its isomer in foods by liquid chromatography tandem mass spectrometry. Food Chem. 2014;153:151–156. doi:10.1016/j.foodchem.2013.12.036. [PubMed] [CrossRef] [Google Scholar]

43. Mercolini L., Mandrioli R., Raggi M.A. Content of melatonin and other antioxidants in grape-related foodstuffs: Measurement using a MEPS-HPLC-F method. J. Pineal Res. 2012;53:21–28. doi:10.1111/j.1600-079X.2011.00967.x. [PubMed] [CrossRef] [Google Scholar]

44. Sturtz M., Cerezo A.B., Cantos-Villar E., Garcia-Parrilla M.C. Determination of the melatonin content of different varieties of tomatoes (Lycopersicon esculentum) and strawberries (Fragariaananassa) Food Chem. 2011;127:1329–1334. doi:10.1016/j.foodchem.2011.01.093. [PubMed] [CrossRef] [Google Scholar]

45. Boccalandro H.E., Gonzalez C.V., Wunderlin D.A., Silva M.F. Melatonin levels, determined by LC-ESI-MS/MS, fluctuate during the day/night cycle in Vitis vinifera cv. Malbec: Evidence of its antioxidant role in fruits. J. Pineal Res. 2011;51:226–232. doi:10.1111/j.1600-079X.2011.00884.x. [PubMed] [CrossRef] [Google Scholar]

46. Burkhardt S., Tan D.X., Manchester L.C., Hardeland R., Reiter R.J. Detection and quantification of the antioxidant melatonin in Montmorency and Balaton tart cherries (Prunus cerasus) J. Agric. Food Chem. 2001;49:4898–4902. doi:10.1021/jf010321+. [PubMed] [CrossRef] [Google Scholar]

47. Badria F.A. Melatonin, serotonin, and tryptamine in some Egyptian food and medicinal plants. J. Med. Food. 2002;5:153–157. doi:10.1089/10966200260398189. [PubMed] [CrossRef] [Google Scholar]

48. Dubbels R., Reiter R.J., Klenke E., Goebel A., Schnakenberg E., Ehlers C., Schiwara H.W., Schloot W. Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry. J. Pineal Res. 1995;18:28–31. doi:10.1111/j.1600-079X.1995.tb00136.x. [PubMed] [CrossRef] [Google Scholar]

49. Riga P., Medina S., Garcia-Flores L.A., Gil-Izquierdo A. Melatonin content of pepper and tomato fruits: Effects of cultivar and solar radiation. Food Chem. 2014;156:347–352. doi:10.1016/j.foodchem.2014.01.117. [PubMed] [CrossRef] [Google Scholar]

50. Muszynska B., Kala K., Sulkowska-Ziaja K., Krakowska A., Opoka W. Agaricus bisporus and its in vitro culture as a source of indole compounds released into artificial digestive juices. Food Chem. 2016;199:509–515. doi:10.1016/j.foodchem.2015.12.041. [PubMed] [CrossRef] [Google Scholar]

51. Manchester L.C., Tan D.X., Reiter R.J., Park W., Monis K., Qi W. High levels of melatonin in the seeds of edible plants: Possible function in germ tissue protection. Life Sci. 2000;67:3023–3029. doi:10.1016/S0024-3205(00)00896-1. [PubMed] [CrossRef] [Google Scholar]

52. Zielin Ski H., Lewczuk B., Przybylska-Gornowicz B., Kozlowska H. Melatonin in germinated legume seeds as a potentially significant agent for health. In: Pfannhauser W., Fenwick G.R., Khokhar S.R., editors. Biologically-Active phytochemicals in Food: Analysis, Metabolism, Bioavailability and Function, Norwich, UK, 2001. Royal Society of Chemistry; Cambridge, UK: 2001. [Google Scholar]

53. Aguilera Y., Herrera T., Liebana R., Rebollo-Hernanz M., Sanchez-Puelles C., Martin-Cabrejas M.A. Impact of melatonin enrichment during germination of legumes on bioactive compounds and antioxidant activity. J. Agric. Food Chem. 2015;63:7967–7974. doi:10.1021/acs.jafc.5b03128. [PubMed] [CrossRef] [Google Scholar]

54. Garcia-Moreno H., Calvo J.R., Maldonado M.D. High levels of melatonin generated during the brewing process. J. Pineal Res. 2013;55:26–30. doi:10.1111/jpi.12005. [PubMed] [CrossRef] [Google Scholar]

55. Rodriguez-Naranjo M.I., Gil-Izquierdo A., Troncoso A.M., Cantos E., Garcia-Parrilla M.C. Melatonin: A new bioactive compound in wine. J. Food Compos. Anal. 2011;24:603–608. doi:10.1016/j.jfca.2010.12.009. [CrossRef] [Google Scholar]

56. Stege P.W., Sombra L.L., Messina G., Martinez L.D., Silva M.F. Determination of melatonin in wine and plant extracts by capillary electrochromatography with immobilized carboxylic multi-walled carbon nanotubes as stationary phase. Electrophoresis. 2010;31:2242–2248. doi:10.1002/elps.200900782. [PubMed] [CrossRef] [Google Scholar]

57. Rodriguez-Naranjo M.I., Gil-Izquierdo A., Troncoso A.M., Cantos-Villar E., Garcia-Parrilla M.C. Melatonin is synthesised by yeast during alcoholic fermentation in wines. Food Chem. 2011;126:1608–1613. doi:10.1016/j.foodchem.2010.12.038. [PubMed] [CrossRef] [Google Scholar]

58. Ramakrishna A., Giridhar P., Sankar K.U., Ravishankar G.A. Melatonin and serotonin profiles in beans of Coffea species. J. Pineal Res. 2012;52:470–476. doi:10.1111/j.1600-079X.2011.00964.x. [PubMed] [CrossRef] [Google Scholar]

59. Vitalini S., Gardana C., Simonetti P., Fico G., Iriti M. Melatonin, melatonin isomers and stilbenes in Italian traditional grape products and their antiradical capacity. J. Pineal Res. 2013;54:322–333. doi:10.1111/jpi.12028. [PubMed] [CrossRef] [Google Scholar]

60. Kirakosyan A., Seymour E.M., Llanes D.E.U., Kaufman P.B., Bolling S.F. Chemical profile and antioxidant capacities of tart cherry products. Food Chem. 2009;115:20–25. doi:10.1016/j.foodchem.2008.11.042. [CrossRef] [Google Scholar]

61. Chen G., Huo Y., Tan D.X., Liang Z., Zhang W., Zhang Y. Melatonin in Chinese medicinal herbs. Life Sci. 2003;73:19–26. doi:10.1016/S0024-3205(03)00252-2. [PubMed] [CrossRef] [Google Scholar]

62. Padumanonda T., Johns J., Sangkasat A., Tiyaworanant S. Determination of melatonin content in traditional Thai herbal remedies used as sleeping aids. Daru. 2014;22:6. doi:10.1186/2008-2231-22-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

63. de la Puerta C., Carrascosa-Salmoral M.P., García-Luna P.P., Lardone P.J., Herrera J.L., Fernández-Montesinos R., Guerrero J.M., Pozo D. Melatonin is a phytochemical in olive oil. Food Chem. 2007;104:609–612. doi:10.1016/j.foodchem.2006.12.010. [CrossRef] [Google Scholar]

64. Venegas C., Cabrera-Vique C., Garcia-Corzo L., Escames G., Acuna-Castroviejo D., Lopez L.C. Determination of coenzyme Q10, coenzyme Q9, and melatonin contents in virgin argan oils: Comparison with other edible vegetable oils. J. Agric. Food Chem. 2011;59:12102–12108. doi:10.1021/jf203428t. [PubMed] [CrossRef] [Google Scholar]

65. Reinholds I., Pugajeva I., Radenkovs V., Rjabova J., Bartkevics V. Development and validation of new ultra-high-performance liquid chromatography-hybrid quadrupole-orbitrap mass spectrometry method for determination of melatonin in fruits. J. Chromatogr. Sci. 2016;54:977–984. doi:10.1093/chromsci/bmw030. [PubMed] [CrossRef] [Google Scholar]

66. Vakkuri O., Kivela A., Leppaluoto J., Valtonen M., Kauppila A. Decrease in melatonin precedes follicle-stimulating hormone increase during perimenopause. Eur. J. Endocrinol. 1996;135:188–192. doi:10.1530/eje.0.1350188. [PubMed] [CrossRef] [Google Scholar]

67. Waldhauser F., Weiszenbacher G., Tatzer E., Gisinger B., Waldhauser M., Schemper M., Frisch H. Alterations in nocturnal serum melatonin levels in humans with growth and aging. J. Clin. Endocrinol. Metab. 1988;66:648–652. doi:10.1210/jcem-66-3-648. [PubMed] [CrossRef] [Google Scholar]

68. Sharma M., Palacios-Bois J., Schwartz G., Iskandar H., Thakur M., Quirion R., Nair N.P. Circadian rhythms of melatonin and cortisol in aging. Biol. Psychiatry. 1989;25:305–319. doi:10.1016/0006-3223(89)90178-9. [PubMed] [CrossRef] [Google Scholar]

69. Singh M., Jadhav H.R. Melatonin: Functions and ligands. Drug Discov. Today. 2014;19:1410–1418. doi:10.1016/j.drudis.2014.04.014. [PubMed] [CrossRef] [Google Scholar]

70. Gao Y., Xiao X., Zhang C., Yu W., Guo W., Zhang Z., Li Z., Feng X., Hao J., Zhang K., et al. Melatonin synergizes the chemotherapeutic effect of 5-fluorouracil in colon cancer by suppressing PI3K/AKT and NF-kappaB/iNOS signaling pathways. J. Pineal Res. 2017;62 doi:10.1111/jpi.12380. [PubMed] [CrossRef] [Google Scholar]

71. DeMuro R.L., Nafziger A.N., Blask D.E., Menhinick A.M., Bertino J.J. The absolute bioavailability of oral melatonin. J. Clin. Pharmacol. 2000;40:781–784. doi:10.1177/00912700022009422. [PubMed] [CrossRef] [Google Scholar]

72. Fourtillan J.B., Brisson A.M., Gobin P., Ingrand I., Decourt J.P., Girault J. Bioavailability of melatonin in humans after day-time administration of D7 melatonin. Biopharm. Drug Dispos. 2000;21:15–22. doi:10.1002/1099-081X(200001)21:1<15::AID-BDD215>3.0.CO;2-H. [PubMed] [CrossRef] [Google Scholar]

73. Shirakawa S., Tsuchiya S., Tsutsumi Y., Kotorii T., Uchimura N., Sakamoto T., Yamada S. Time course of saliva and serum melatonin levels after ingestion of melatonin. Psychiatry Clin. Neurosci. 1998;52:266–267. doi:10.1111/j.1440-1819.1998.tb01067.x. [PubMed] [CrossRef] [Google Scholar]

74. Oba S., Nakamura K., Sahashi Y., Hattori A., Nagata C. Consumption of vegetables alters morning urinary 6-sulfatoxymelatonin concentration. J. Pineal Res. 2008;45:17–23. doi:10.1111/j.1600-079X.2007.00549.x. [PubMed] [CrossRef] [Google Scholar]

75. Maldonado M.D., Moreno H., Calvo J.R. Melatonin present in beer contributes to increase the levels of melatonin and antioxidant capacity of the human serum. Clin. Nutr. 2009;28:188–191. doi:10.1016/j.clnu.2009.02.001. [PubMed] [CrossRef] [Google Scholar]

76. Gonzalez-Flores D., Gamero E., Garrido M., Ramirez R., Moreno D., Delgado J., Valdes E., Barriga C., Rodriguez A.B., Paredes S.D. Urinary 6-sulfatoxymelatonin and total antioxidant capacity increase after the intake of a grape juice cv. Tempranillo stabilized with HHP. Food Funct. 2012;3:34–39. doi:10.1039/C1FO10146C. [PubMed] [CrossRef] [Google Scholar]

77. González-Flores D., Velardo B., Garrido M., González-Gómez D., Lozano M., Ayuso M.C., Barriga C., Paredes S.D., Rodríguez A.B. Ingestion of Japanese plums (Prunus salicina Lindl. cv. Crimson Globe) increases the urinary 6-sulfatoxymelatonin and total antioxidant capacity levels in young, middle-aged and elderly humans: nutritional and functional characterization of their content. J. Food Nutr. Res. 2011;50:229. [Google Scholar]

78. Reiter R.J., Manchester L.C., Tan D.X. Melatonin in walnuts: Influence on levels of melatonin and total antioxidant capacity of blood. Nutrition. 2005;21:920–924. doi:10.1016/j.nut.2005.02.005. [PubMed] [CrossRef] [Google Scholar]

79. Schernhammer E.S., Feskanich D., Niu C., Dopfel R., Holmes M.D., Hankinson S.E. Dietary correlates of urinary 6-sulfatoxymelatonin concentrations in the Nurses’ Health Study cohorts. Am. J. Clin. Nutr. 2009;90:975–985. doi:10.3945/ajcn.2009.27826. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

80. Aguilera Y., Rebollo-Hernanz M., Herrera T., Cayuelas L.T., Rodriguez-Rodriguez P., de Pablo A.L., Arribas S.M., Martin-Cabrejas M.A. Intake of bean sprouts influences melatonin and antioxidant capacity biomarker levels in rats. Food Funct. 2016;7:1438–1445. doi:10.1039/C5FO01538C. [PubMed] [CrossRef] [Google Scholar]

81. Tetens I. Scientific Opinion on the Substantiation of Health Claims Related to Melatonin and Alleviation of Subjective Feelings of Jet Lag (ID 1953), and Reduction of Sleep onset Latency, and Improvement of Sleep Quality (ID 1953) Pursuant to Article 13(1) of Regulation (EC) No 1924/2006. European Food Safety Authority; Parma, Itlay: 2010. [Google Scholar]

82. Food Standards Australia New Zealand (FSANZ) Supporting document 9: Consideration of EU Approved Health Claims, P293—Nutrition, Health & Related Claim. Food Standards Australia New Zealand; Kingston, Australia, Wellington, Newzealand: 2013. [Google Scholar]

83. Hattori A., Migitaka H., Iigo M., Itoh M., Yamamoto K., Ohtani-Kaneko R., Hara M., Suzuki T., Reiter R.J. Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. Biochem. Mol. Biol. Int. 1995;35:627–634. [PubMed] [Google Scholar]

84. Byeon Y., Back K. An increase in melatonin in transgenic rice causes pleiotropic phenotypes, including enhanced seedling growth, delayed flowering, and low grain yield. J. Pineal Res. 2014;56:408–414. doi:10.1111/jpi.12129. [PubMed] [CrossRef] [Google Scholar]

85. Hernandez-Ruiz J., Cano A., Arnao M.B. Melatonin acts as a growth-stimulating compound in some monocot species. J. Pineal Res. 2005;39:137–142. doi:10.1111/j.1600-079X.2005.00226.x. [PubMed] [CrossRef] [Google Scholar]

86. Fardet A. New hypotheses for the health-protective mechanisms of whole-grain cereals: What is beyond fibre? Nutr. Res. Rev. 2010;23:65–134. doi:10.1017/S0954422410000041. [PubMed] [CrossRef] [Google Scholar]

87. Hosseinian F.S., Li W., Beta T. Measurement of anthocyanins and other phytochemicals in purple wheat. Food Chem. 2008;109:916–924. doi:10.1016/j.foodchem.2007.12.083. [PubMed] [CrossRef] [Google Scholar]

88. Lei Q., Wang L., Tan D.X., Zhao Y., Zheng X.D., Chen H., Li Q.T., Zuo B.X., Kong J. Identification of genes for melatonin synthetic enzymes in ‘Red Fuji’ apple (Malus domestica Borkh. cv. Red) and their expression and melatonin production during fruit development. J. Pineal Res. 2013;55:443–451. [PubMed] [Google Scholar]

89. Zhao Y., Tan D.X., Lei Q., Chen H., Wang L., Li Q.T., Gao Y., Kong J. Melatonin and its potential biological functions in the fruits of sweet cherry. J. Pineal Res. 2013;55:79–88. doi:10.1111/jpi.12044. [PubMed] [CrossRef] [Google Scholar]

90. Vitalini S., Gardana C., Zanzotto A., Simonetti P., Faoro F., Fico G., Iriti M. The presence of melatonin in grapevine (Vitis vinifera L.) berry tissues. J. Pineal Res. 2011;51:331–337. doi:10.1111/j.1600-079X.2011.00893.x. [PubMed] [CrossRef] [Google Scholar]

91. Brown P.N., Turi C.E., Shipley P.R., Murch S.J. Comparisons of large (Vaccinium macrocarpon Ait.) and small (Vaccinium oxycoccos L., Vaccinium vitis-idaea L.) cranberry in British Columbia by phytochemical determination, antioxidant potential, and metabolomic profiling with chemometric analysis. Planta Med. 2012;78:630–640. doi:10.1055/s-0031-1298239. [PubMed] [CrossRef] [Google Scholar]

92. Simopoulos A.P., Tan D.X., Manchester L.C., Reiter R.J. Purslane: A plant source of omega-3 fatty acids and melatonin. J. Pineal Res. 2005;39:331–332. doi:10.1111/j.1600-079X.2005.00269.x. [PubMed] [CrossRef] [Google Scholar]

93. Okazaki M., Ezura H. Profiling of melatonin in the model tomato (Solanum lycopersicum L.) cultivar Micro-Tom. J. Pineal Res. 2009;46:338–343. doi:10.1111/j.1600-079X.2009.00668.x. [PubMed] [CrossRef] [Google Scholar]

94. Wang L., Zhao Y., Reiter R.J., He C., Liu G., Lei Q., Zuo B., Zheng X.D., Li Q., Kong J. Changes in melatonin levels in transgenic ‘Micro-Tom’ tomato overexpressing ovine AANAT and ovine HIOMT genes. J. Pineal Res. 2014;56:134–142. doi:10.1111/jpi.12105. [PubMed] [CrossRef] [Google Scholar]

95. Zhang H.J., Zhang N., Yang R.C., Wang L., Sun Q.Q., Li D.B., Cao Y.Y., Weeda S., Zhao B., Ren S., Guo Y.D. Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA(4) interaction in cucumber (Cucumis sativus L.) J. Pineal Res. 2014;57:269–279. doi:10.1111/jpi.12167. [PubMed] [CrossRef] [Google Scholar]

96. Byeon Y., Park S., Lee H.Y., Kim Y.S., Back K. Elevated production of melatonin in transgenic rice seeds expressing rice tryptophan decarboxylase. J. Pineal Res. 2014;56:275–282. doi:10.1111/jpi.12120. [PubMed] [CrossRef] [Google Scholar]

97. Tapia M.I., Sánchez-Morgado J.R., García-Parra J., Ramírez R., Hernández T., González-Gómez D. Comparative study of the nutritional and bioactive compounds content of four walnut (Juglans regia L.) cultivars. J. Food Compos. Anal. 2013;31:232–237. doi:10.1016/j.jfca.2013.06.004. [CrossRef] [Google Scholar]

98. Fernandez-Pachon M.S., Medina S., Herrero-Martin G., Cerrillo I., Berna G., Escudero-Lopez B., Ferreres F., Martin F., Garcia-Parrilla M.C., Gil-Izquierdo A. Alcoholic fermentation induces melatonin synthesis in orange juice. J. Pineal Res. 2014;56:31–38. doi:10.1111/jpi.12093. [PubMed] [CrossRef] [Google Scholar]

99. Pothinuch P., Tongchitpakdee S. Melatonin contents in mulberry (Morus spp.) leaves: Effects of sample preparation, cultivar, leaf age and tea processing. Food Chem. 2011;128:415–419. doi:10.1016/j.foodchem.2011.03.045. [PubMed] [CrossRef] [Google Scholar]

100. Wehr T.A., Duncan W.C., Jr., Sher L., Aeschbach D., Schwartz P.J., Turner E.H., Postolache T.T., Rosenthal N.E. A circadian signal of change of season in patients with seasonal affective disorder. Arch. Gen. Psychiatry. 2001;58:1108–1114. doi:10.1001/archpsyc.58.12.1108. [PubMed] [CrossRef] [Google Scholar]

101. Rexhaj E., Pireva A., Paoloni-Giacobino A., Allemann Y., Cerny D., Dessen P., Sartori C., Scherrer U., Rimoldi S.F. Prevention of vascular dysfunction and arterial hypertension in mice generated by assisted reproductive technologies by addition of melatonin to culture media. Am. J. Physiol. Heart Circ. Physiol. 2015;309:H1151–H1156. doi:10.1152/ajpheart.00621.2014. [PubMed] [CrossRef] [Google Scholar]

102. Michurina S.V., Ishchenko I.Y., Arkhipov S.A., Klimontov V.V., Rachkovskaya L.N., Konenkov V.I., Zavyalov E.L. Effects of melatonin, aluminum oxide, and polymethylsiloxane complex on the expression of LYVE-1 in the liver of mice with obesity and type 2 diabetes mellitus. Bull. Exp. Biol. Med. 2016;162:269–272. doi:10.1007/s10517-016-3592-y. [PubMed] [CrossRef] [Google Scholar]

103. Bielli A., Scioli M.G., Mazzaglia D., Doldo E., Orlandi A. Antioxidants and vascular health. Life Sci. 2015;143:209–216. doi:10.1016/j.lfs.2015.11.012. [PubMed] [CrossRef] [Google Scholar]

104. Barton S.K., Tolcos M., Miller S.L., Christoph-Roehr C., Schmolzer G.M., Moss T.J., Hooper S.B., Wallace E.M., Polglase G.R. Ventilation-induced brain injury in preterm neonates: A review of potential therapies. Neonatology. 2016;110:155–162. doi:10.1159/000444918. [PubMed] [CrossRef] [Google Scholar]

105. Droge W. Free radicals in the physiological control of cell function. Physiol. Rev. 2002;82:47–95. doi:10.1152/physrev.00018.2001. [PubMed] [CrossRef] [Google Scholar]

106. Singh A.K., Haldar C. Age dependent nitro-oxidative load and melatonin receptor expression in the spleen and immunity of goat Capra hircus. Exp. Gerontol. 2014;60:72–78. doi:10.1016/j.exger.2014.09.017. [PubMed] [CrossRef] [Google Scholar]

107. Aktoz T., Aydogdu N., Alagol B., Yalcin O., Huseyinova G., Atakan I.H. The protective effects of melatonin and vitamin E against renal ischemia-reperfusion injury in rats. Ren. Fail. 2007;29:535–542. doi:10.1080/08860220701391738. [PubMed] [CrossRef] [Google Scholar]

108. Lissoni P., Chilelli M., Villa S., Cerizza L., Tancini G. Five years survival in metastatic non-small cell lung cancer patients treated with chemotherapy alone or chemotherapy and melatonin: A randomized trial. J. Pineal Res. 2003;35:12–15. doi:10.1034/j.1600-079X.2003.00032.x. [PubMed] [CrossRef] [Google Scholar]

109. Paredes S.D., Forman K.A., Garcia C., Vara E., Escames G., Tresguerres J.A. Protective actions of melatonin and growth hormone on the aged cardiovascular system. Horm. Mol. Biol. Clin. Investig. 2014;18:79–88. doi:10.1515/hmbci-2014-0016. [PubMed] [CrossRef] [Google Scholar]

110. Zephy D., Ahmad J. Type 2 diabetes mellitus: Role of melatonin and oxidative stress. Diabetes Metab. Syndr. 2015;9:127–131. doi:10.1016/j.dsx.2014.09.018. [PubMed] [CrossRef] [Google Scholar]

111. Chen H.H., Lin K.C., Wallace C.G., Chen Y.T., Yang C.C., Leu S., Chen Y.C., Sun C.K., Tsai T.H., Chen Y.L., et al. Additional benefit of combined therapy with melatonin and apoptotic adipose-derived mesenchymal stem cell against sepsis-induced kidney injury. J. Pineal Res. 2014;57:16–32. doi:10.1111/jpi.12140. [PubMed] [CrossRef] [Google Scholar]

112. Deng G.F., Lin X., Xu X.R., Gao L.L., Xie J.F., Li H.B. Antioxidant capacities and total phenolic contents of 56 vegetables. J. Funct. Foods. 2013;5:260–266. doi:10.1016/j.jff.2012.10.015. [CrossRef] [Google Scholar]

113. Fu L., Xu B.T., Xu X.R., Qin X.S., Gan R.Y., Li H.B. Antioxidant capacities and total phenolic contents of 56 wild fruits from South China. Molecules. 2010;15:8602–8617. doi:10.3390/molecules15128602. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

114. Guo Y.J., Deng G.F., Xu X.R., Wu S., Li S., Xia E.Q., Li F., Chen F., Ling W.H., Li H.B. Antioxidant capacities, phenolic compounds and polysaccharide contents of 49 edible macro-fungi. Food Funct. 2012;3:1195–1205. doi:10.1039/c2fo30110e. [PubMed] [CrossRef] [Google Scholar]

115. Li A.N., Li S., Li H.B., Xu D.P., Xu X.R., Chen F. Total phenolic contents and antioxidant capacities of 51 edible and wild flowers. J. Funct. Foods. 2014;6:319–330. doi:10.1016/j.jff.2013.10.022. [CrossRef] [Google Scholar]

116. Li S., Li S.K., Gan R.Y., Song F.L., Kuang L., Li H.B. Antioxidant capacities and total phenolic contents of infusions from 223 medicinal plants. Ind. Crops Prod. 2013;51:289–298. doi:10.1016/j.indcrop.2013.09.017. [CrossRef] [Google Scholar]

117. Deng G.F., Xu X.R., Zhang Y., Li D., Gan R.Y., Li H.B. Phenolic compounds and bioactivities of pigmented rice. Crit. Rev. Food Sci. 2013;53:296–306. doi:10.1080/10408398.2010.529624. [PubMed] [CrossRef] [Google Scholar]

118. Li A.N., Li S., Zhang Y.J., Xu X.R., Chen Y.M., Li H.B. Resources and biological activities of natural polyphenols. Nutrients. 2014;6:6020–6047. doi:10.3390/nu6126020. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

119. Li Y., Zhang J.J., Xu D.P., Zhou T., Zhou Y., Li S., Li H.B. Bioactivities and health benefits of wild fruits. Int. J. Mol. Sci. 2016;17:1258. doi:10.3390/ijms17081258. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

120. Zhang J.J., Li Y., Zhou T., Xu D.P., Zhang P., Li S., Li H.B. Bioactivities and health benefits of mushrooms mainly from China. Molecules. 2016;21:938. doi:10.3390/molecules21070938. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

121. Zhang Y.J., Gan R.Y., Li S., Zhou Y., Li A.N., Xu D.P., Li H.B. Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules. 2015;20:21138–21156. doi:10.3390/molecules201219753. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

122. Okatani Y., Wakatsuki A., Reiter R.J., Miyahara Y. Acutely administered melatonin restores hepatic mitochondrial physiology in old mice. Int. J. Biochem. Cell Biol. 2003;35:367–375. doi:10.1016/S1357-2725(02)00260-1. [PubMed] [CrossRef] [Google Scholar]

123. Khaldy H., Escames G., Leon J., Vives F., Luna J.D., Acuna-Castroviejo D. Comparative effects of melatonin, L-deprenyl, Trolox and ascorbate in the suppression of hydroxyl radical formation during dopamine autoxidation in vitro. J. Pineal Res. 2000;29:100–107. doi:10.1034/j.1600-079X.2000.290206.x. [PubMed] [CrossRef] [Google Scholar]

124. Urata Y., Honma S., Goto S., Todoroki S., Iida T., Cho S., Honma K., Kondo T. Melatonin induces gamma-glutamylcysteine synthetase mediated by activator protein-1 in human vascular endothelial cells. Free Radic. Biol. Med. 1999;27:838–847. doi:10.1016/S0891-5849(99)00131-8. [PubMed] [CrossRef] [Google Scholar]

125. Montilla P., Cruz A., Padillo F.J., Tunez I., Gascon F., Munoz M.C., Gomez M., Pera C. Melatonin versus vitamin E as protective treatment against oxidative stress after extra-hepatic bile duct ligation in rats. J. Pineal Res. 2001;31:138–144. doi:10.1034/j.1600-079x.2001.310207.x. [PubMed] [CrossRef] [Google Scholar]

126. Poeggeler B., Reiter R.J., Tan D.X., Chen L.D., Manchester L.C. Melatonin: A potent, endogenous hydroxyl radical scavenger. J. Pineal Res. 1993;14:57–60. [Google Scholar]

127. Okatani Y., Watanabe K., Hayashi K., Wakatsuki A., Sagara Y. Melatonin inhibits vasospastic action of hydrogen peroxide in human umbilical artery. J. Pineal Res. 1997;22:163–168. doi:10.1111/j.1600-079X.1997.tb00318.x. [PubMed] [CrossRef] [Google Scholar]

128. Hsu C., Han B., Liu M., Yeh C., Casida J.E. Phosphine-induced oxidative damage in rats: Attenuation by melatonin. Free Radic. Biol. Med. 2000;28:636–642. doi:10.1016/S0891-5849(99)00277-4. [PubMed] [CrossRef] [Google Scholar]

129. Tan D.X., Hardeland R., Manchester L.C., Poeggeler B., Lopez-Burillo S., Mayo J.C., Sainz R.M., Reiter R.J. Mechanistic and comparative studies of melatonin and classic antioxidants in terms of their interactions with the ABTS cation radical. J. Pineal Res. 2003;34:249–259. doi:10.1034/j.1600-079X.2003.00037.x. [PubMed] [CrossRef] [Google Scholar]

130. Ressmeyer A.R., Mayo J.C., Zelosko V., Sainz R.M., Tan D.X., Poeggeler B., Antolin I., Zsizsik B.K., Reiter R.J., Hardeland R. Antioxidant properties of the melatonin metabolite N1-acetyl-5-methoxykynuramine (AMK): Scavenging of free radicals and prevention of protein destruction. Redox Rep. 2003;8:205–213. doi:10.1179/135100003225002709. [PubMed] [CrossRef] [Google Scholar]

131. Tan D.X., Manchester L.C., Terron M.P., Flores L.J., Reiter R.J. One molecule, many derivatives: A never-ending interaction of melatonin with reactive oxygen and nitrogen species? J. Pineal Res. 2007;42:28–42. doi:10.1111/j.1600-079X.2006.00407.x. [PubMed] [CrossRef] [Google Scholar]

132. Escames G., Lopez L.C., Ortiz F., Ros E., Acuna-Castroviejo D. Age-dependent lipopolysaccharide-induced iNOS expression and multiorgan failure in rats: Effects of melatonin treatment. Exp. Gerontol. 2006;41:1165–1173. doi:10.1016/j.exger.2006.09.002. [PubMed] [CrossRef] [Google Scholar]

133. Sonmez M.F., Narin F., Akkus D., Ozdamar S. Effect of melatonin and vitamin C on expression of endothelial NOS in heart of chronic alcoholic rats. Toxicol. Ind. Health. 2009;25:385–393. doi:10.1177/0748233709106444. [PubMed] [CrossRef] [Google Scholar]

134. Buldak R.J., Pilc-Gumula K., Buldak L., Witkowska D., Kukla M., Polaniak R., Zwirska-Korczala K. Effects of ghrelin, leptin and melatonin on the levels of reactive oxygen species, antioxidant enzyme activity and viability of the HCT 116 human colorectal carcinoma cell line. Mol. Med. Rep. 2015;12:2275–2282. [PubMed] [Google Scholar]

135. Tesoriere L., Allegra M., D’Arpa D., Butera D., Livrea M.A. Reaction of melatonin with hemoglobin-derived oxoferryl radicals and inhibition of the hydroperoxide-induced hemoglobin denaturation in red blood cells. J. Pineal Res. 2001;31:114–119. doi:10.1034/j.1600-079x.2001.310204.x. [PubMed] [CrossRef] [Google Scholar]

136. Li M., Pi H., Yang Z., Reiter R.J., Xu S., Chen X., Chen C., Zhang L., Yang M., Li Y., et al. Melatonin antagonizes cadmium-induced neurotoxicity by activating the transcription factor EB-dependent autophagy-lysosome machinery in mouse neuroblastoma cells. J. Pineal Res. 2016;61:353–369. doi:10.1111/jpi.12353. [PubMed] [CrossRef] [Google Scholar]

137. Rao M.V., Chhunchha B. Protective role of melatonin against the mercury induced oxidative stress in the rat thyroid. Food Chem. Toxicol. 2010;48:7–10. doi:10.1016/j.fct.2009.06.038. [PubMed] [CrossRef] [Google Scholar]

138. Zhang Y., Wei Z., Liu W., Wang J., He X., Huang H., Zhang J., Yang Z. Melatonin protects against arsenic trioxide-induced liver injury by the upregulation of Nrf2 expression through the activation of PI3K/AKT pathway. Oncotarget. 2017;8:3773–3780. doi:10.18632/oncotarget.13931. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

139. Hernandez-Plata E., Quiroz-Compean F., Ramirez-Garcia G., Barrientos E.Y., Rodriguez-Morales N.M., Flores A., Wrobel K., Wrobel K., Mendez I., Diaz-Munoz M., et al. Melatonin reduces lead levels in blood, brain and bone and increases lead excretion in rats subjected to subacute lead treatment. Toxicol. Lett. 2015;233:78–83. doi:10.1016/j.toxlet.2015.01.009. [PubMed] [CrossRef] [Google Scholar]

140. Karabulut-Bulan O., Bayrak B.B., Arda-Pirincci P., Sarikaya-Unal G., Us H., Yanardag R. Role of exogenous melatonin on cell proliferation and oxidant/antioxidant system in aluminum-induced renal toxicity. Biol. Trace Elem. Res. 2015;168:141–149. doi:10.1007/s12011-015-0320-9. [PubMed] [CrossRef] [Google Scholar]

141. Navarro-Alarcon M., Ruiz-Ojeda F.J., Blanca-Herrera R.M., Kaki A., Adem A., Agil A. Melatonin administration in diabetes: Regulation of plasma Cr, V, and Mg in young male Zucker diabetic fatty rats. Food Funct. 2014;5:512–516. doi:10.1039/c3fo60389j. [PubMed] [CrossRef] [Google Scholar]

142. Leon J., Escames G., Rodriguez M.I., Lopez L.C., Tapias V., Entrena A., Camacho E., Carrion M.D., Gallo M.A., Espinosa A., et al. Inhibition of neuronal nitric oxide synthase activity by N1-acetyl-5-methoxykynuramine, a brain metabolite of melatonin. J. Neurochem. 2006;98:2023–2033. doi:10.1111/j.1471-4159.2006.04029.x. [PubMed] [CrossRef] [Google Scholar]

143. Martinez-Campa C., Gonzalez A., Mediavilla M.D., Alonso-Gonzalez C., Alvarez-Garcia V., Sanchez-Barcelo E.J., Cos S. Melatonin inhibits aromatase promoter expression by regulating cyclooxygenases expression and activity in breast cancer cells. Br. J. Cancer. 2009;101:1613–1619. doi:10.1038/sj.bjc.6605336. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

144. Mayo J.C., Sainz R.M., Antoli I., Herrera F., Martin V., Rodriguez C. Melatonin regulation of antioxidant enzyme gene expression. Cell. Mol. Life Sci. 2002;59:1706–1713. doi:10.1007/PL00012498. [PubMed] [CrossRef] [Google Scholar]

145. Mehrzadi S., Safa M., Kamrava S.K., Darabi R., Hayat P., Motevalian M. Protective mechanisms of melatonin against hydrogen peroxide induced toxicity in human bone-marrow derived mesenchymal stem cells. Can. J. Physiol. Pharmacol. 2016 doi:10.1139/cjpp-2016-0409. [PubMed] [CrossRef] [Google Scholar]

146. Bilici D., Suleyman H., Banoglu Z.N., Kiziltunc A., Avci B., Ciftcioglu A., Bilici S. Melatonin prevents ethanol-induced gastric mucosal damage possibly due to its antioxidant effect. Dig. Dis. Sci. 2002;47:856–861. doi:10.1023/A:1014764705864. [PubMed] [CrossRef] [Google Scholar]

147. Ciftci M., Bilici D., Kufrevioglu O.I. Effects of melatonin on enzyme activities of glucose-6-phosphate dehydrogenase from human erythrocytes in vitro and from rat erythrocytes in vivo. Pharmacol. Res. 2001;44:7–11. doi:10.1006/phrs.2001.0837. [PubMed] [CrossRef] [Google Scholar]

148. Gitto E., Tan D.X., Reiter R.J., Karbownik M., Manchester L.C., Cuzzocrea S., Fulia F., Barberi I. Individual and synergistic antioxidative actions of melatonin: Studies with vitamin E, vitamin C, glutathione and desferrioxamine (desferoxamine) in rat liver hom*ogenates. J. Pharm. Pharmacol. 2001;53:1393–1401. doi:10.1211/0022357011777747. [PubMed] [CrossRef] [Google Scholar]

149. Sun C., Zhang F., Ge X., Yan T., Chen X., Shi X., Zhai Q. SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B. Cell Metab. 2007;6:307–319. doi:10.1016/j.cmet.2007.08.014. [PubMed] [CrossRef] [Google Scholar]

150. Chahbouni M., Escames G., Venegas C., Sevilla B., Garcia J.A., Lopez L.C., Munoz-Hoyos A., Molina-Carballo A., Acuna-Castroviejo D. Melatonin treatment normalizes plasma pro-inflammatory cytokines and nitrosative/oxidative stress in patients suffering from duch*enne muscular dystrophy. J. Pineal Res. 2010;48:282–289. doi:10.1111/j.1600-079X.2010.00752.x. [PubMed] [CrossRef] [Google Scholar]

151. Kepka M., Szwejser E., Pijanowski L., Verburg-van Kemenade B.M., Chadzinska M. A role for melatonin in maintaining the pro- and anti-inflammatory balance by influencing leukocyte migration and apoptosis in carp. Dev. Comp. Immunol. 2015;53:179–190. doi:10.1016/j.dci.2015.07.011. [PubMed] [CrossRef] [Google Scholar]

152. Perkins N.D. Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat. Rev. Mol. Cell Biol. 2007;8:49–62. doi:10.1038/nrm2083. [PubMed] [CrossRef] [Google Scholar]

153. Gilmore T.D. Introduction to NF-kappaB: Players, pathways, perspectives. Oncogene. 2006;25:6680–6684. doi:10.1038/sj.onc.1209954. [PubMed] [CrossRef] [Google Scholar]

154. Garcia J.A., Volt H., Venegas C., Doerrier C., Escames G., Lopez L.C., Acuna-Castroviejo D. Disruption of the NF-kappaB/NLRP3 connection by melatonin requires retinoid-related orphan receptor-alpha and blocks the septic response in mice. FASEB J. 2015;29:3863–3875. doi:10.1096/fj.15-273656. [PubMed] [CrossRef] [Google Scholar]

155. Hu Z.P., Fang X.L., Fang N., Wang X.B., Qian H.Y., Cao Z., Cheng Y., Wang B.N., Wang Y. Melatonin ameliorates vascular endothelial dysfunction, inflammation, and atherosclerosis by suppressing the TLR4/NF-kappaB system in high-fat-fed rabbits. J. Pineal Res. 2013;55:388–398. [PubMed] [Google Scholar]

156. Yi C., Zhang Y., Yu Z., Xiao Y., Wang J., Qiu H., Yu W., Tang R., Yuan Y., Guo W., et al. Melatonin enhances the anti-tumor effect of fisetin by inhibiting COX-2/iNOS and NF-kappaB/p300 signaling pathways. PLoS ONE. 2014;9:e99943. doi:10.1371/journal.pone.0099943. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

157. Lu J.J., Fu L., Tang Z., Zhang C., Qin L., Wang J., Yu Z., Shi D., Xiao X., Xie F., et al. Melatonin inhibits AP-2beta/hTERT, NF-kappaB/COX-2 and Akt/ERK and activates caspase/Cyto C signaling to enhance the antitumor activity of berberine in lung cancer cells. Oncotarget. 2016;7:2985–3001. [PMC free article] [PubMed] [Google Scholar]

158. Mayo J.C., Sainz R.M., Tan D.X., Hardeland R., Leon J., Rodriguez C., Reiter R.J. Anti-inflammatory actions of melatonin and its metabolites, N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) and N1-acetyl-5-methoxykynuramine (AMK), in macrophages. J. Neuroimmunol. 2005;165:139–149. doi:10.1016/j.jneuroim.2005.05.002. [PubMed] [CrossRef] [Google Scholar]

159. Permpoonputtana K., Govitrapong P. The anti-inflammatory effect of melatonin on methamphetamine-induced proinflammatory mediators in human neuroblastoma dopamine SH-SY5Y cell lines. Neurotox. Res. 2013;23:189–199. doi:10.1007/s12640-012-9350-7. [PubMed] [CrossRef] [Google Scholar]

160. Niranjan R., Nath C., Shukla R. Melatonin attenuated mediators of neuroinflammation and alpha-7 nicotinic acetylcholine receptor mRNA expression in lipopolysaccharide (LPS) stimulated rat astrocytoma cells, C6. Free Radic. Res. 2012;46:1167–1177. doi:10.3109/10715762.2012.697626. [PubMed] [CrossRef] [Google Scholar]

161. Lim H.D., Kim Y.S., Ko S.H., Yoon I.J., Cho S.G., Chun Y.H., Choi B.J., Kim E.C. Cytoprotective and anti-inflammatory effects of melatonin in hydrogen peroxide-stimulated CHON-001 human chondrocyte cell line and rabbit model of osteoarthritis via the SIRT1 pathway. J. Pineal Res. 2012;53:225–237. doi:10.1111/j.1600-079X.2012.00991.x. [PubMed] [CrossRef] [Google Scholar]

162. Min K.J., Jang J.H., Kwon T.K. Inhibitory effects of melatonin on the lipopolysaccharide-induced CC chemokine expression in BV2 murine microglial cells are mediated by suppression of Akt-induced NF-kappaB and STAT/GAS activity. J. Pineal Res. 2012;52:296–304. doi:10.1111/j.1600-079X.2011.00943.x. [PubMed] [CrossRef] [Google Scholar]

163. Yang G.H., Li Y.C., Wang Z.Q., Liu B., Ye W., Ni L., Zeng R., Miao S.Y., Wang L.F., Liu C.W. Protective effect of melatonin on cigarette smoke-induced restenosis in rat carotid arteries after balloon injury. J. Pineal Res. 2014;57:451–458. doi:10.1111/jpi.12185. [PubMed] [CrossRef] [Google Scholar]

164. Shao G., Tian Y., Wang H., Liu F., Xie G. Protective effects of melatonin on lipopolysaccharide-induced mastitis in mice. Int. Immunopharmacol. 2015;29:263–268. doi:10.1016/j.intimp.2015.11.011. [PubMed] [CrossRef] [Google Scholar]

165. Maldonado M.D., Garcia-Moreno H., Gonzalez-Yanes C., Calvo J.R. Possible involvement of the inhibition of NF-kappaB factor in anti-inflammatory actions that melatonin exerts on mast cells. J. Cell Biochem. 2016;117:1926–1933. doi:10.1002/jcb.25491. [PubMed] [CrossRef] [Google Scholar]

166. Wilson B.J., Tremblay A.M., Deblois G., Sylvain-Drolet G., Giguere V. An acetylation switch modulates the transcriptional activity of estrogen-related receptor alpha. Mol. Endocrinol. 2010;24:1349–1358. doi:10.1210/me.2009-0441. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

167. Rodgers J.T., Lerin C., Haas W., Gygi S.P., Spiegelman B.M., Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature. 2005;434:113–118. doi:10.1038/nature03354. [PubMed] [CrossRef] [Google Scholar]

168. Shah S.A., Khan M., Jo M.H., Jo M.G., Amin F.U., Kim M.O. Melatonin stimulates the SIRT1/Nrf2 signaling pathway counteracting lipopolysaccharide (LPS)-induced oxidative stress to rescue postnatal rat brain. CNS Neurosci. Ther. 2016 doi:10.1111/cns.12588. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

169. Ge D., Dauchy R.T., Liu S., Zhang Q., Mao L., Dauchy E.M., Blask D.E., Hill S.M., Rowan B.G., Brainard G.C., et al. Insulin and IGF1 enhance IL-17-induced chemokine expression through a GSK3B-dependent mechanism: A new target for melatonin’s anti-inflammatory action. J. Pineal Res. 2013;55:377–387. doi:10.1111/jpi.12084. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

170. Koyama F.C., Azevedo M.F., Budu A., Chakrabarti D., Garcia C.R. Melatonin-induced temporal up-regulation of gene expression related to ubiquitin/proteasome system (UPS) in the human malaria parasite Plasmodium falciparum. Int. J. Mol. Sci. 2014;15:22320–22330. doi:10.3390/ijms151222320. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

171. Chung S.H., Park Y.S., Kim O.S., Kim J.H., Baik H.W., Hong Y.O., Kim S.S., Shin J.H., Jun J.H., Jo Y., et al. Melatonin attenuates dextran sodium sulfate induced colitis with sleep deprivation: Possible mechanism by microarray analysis. Dig. Dis. Sci. 2014;59:1134–1141. doi:10.1007/s10620-013-3013-2. [PubMed] [CrossRef] [Google Scholar]

172. Yang B., Ni Y.F., Wang W.C., Du H.Y., Zhang H., Zhang L., Zhang W.D., Jiang T. Melatonin attenuates intestinal ischemia—Reperfusion-induced lung injury in rats by upregulating N-myc downstream-regulated gene 2. J. Surg. Res. 2015;194:273–280. doi:10.1016/j.jss.2014.11.018. [PubMed] [CrossRef] [Google Scholar]

173. Singh A.K., Ghosh S., Basu P., Haldar C. Daily variation in melatonin level, antioxidant activity and general immune response of peripheral blood mononuclear cells and lymphoid tissues of Indian goat Capra hircus during summer and winter. Indian J. Exp. Biol. 2014;52:467–477. [PubMed] [Google Scholar]

174. Zhang M., Wang T., Chen H.M., Chen Y.Q., Deng Y.C., Li Y.T. Serum levels of interleukin-1 beta, interleukin-6 and melatonin over summer and winter in kidney deficiency syndrome in Bizheng rats. Chin. Med. Sci. J. 2014;29:107–111. doi:10.1016/S1001-9294(14)60037-7. [PubMed] [CrossRef] [Google Scholar]

175. Provinciali M., Di Stefano G., Bulian D., Tibaldi A., Fabris N. Effect of melatonin and pineal grafting on thymocyte apoptosis in aging mice. Mech. Ageing Dev. 1996;90:1–19. doi:10.1016/0047-6374(96)01746-0. [PubMed] [CrossRef] [Google Scholar]

176. Fernandes P.A., Cecon E., Markus R.P., Ferreira Z.S. Effect of TNF-alpha on the melatonin synthetic pathway in the rat pineal gland: Basis for a ‘feedback’ of the immune response on circadian timing. J. Pineal Res. 2006;41:344–350. doi:10.1111/j.1600-079X.2006.00373.x. [PubMed] [CrossRef] [Google Scholar]

177. Lissoni P., Rovelli F., Giani L., Fumagalli L., Mandala M. Immunomodulatory effects of IL-12 in relation to the pineal endocrine function in metastatic cancer patients. Nat. Immun. 1998;16:178–184. doi:10.1159/000069444. [PubMed] [CrossRef] [Google Scholar]

178. Withyachumnarnkul B., Nonaka K.O., Santana C., Attia A.M., Reiter R.J. Interferon-gamma modulates melatonin production in rat pineal glands in organ culture. J. Interferon Res. 1990;10:403–411. doi:10.1089/jir.1990.10.403. [PubMed] [CrossRef] [Google Scholar]

179. Tan D.X., Manchester L.C., Reiter R.J. CSF generation by pineal gland results in a robust melatonin circadian rhythm in the third ventricle as an unique light/dark signal. Med. Hypotheses. 2016;86:3–9. doi:10.1016/j.mehy.2015.11.018. [PubMed] [CrossRef] [Google Scholar]

180. Markus R.P., Cecon E., Pires-Lapa M.A. Immune-pineal axis: Nuclear factor kappaB (NF-êB) mediates the shift in the melatonin source from pinealocytes to immune competent cells. Int. J. Mol. Sci. 2013;14:10979–10997. doi:10.3390/ijms140610979. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

181. Pontes G.N., Cardoso E.C., Carneiro-Sampaio M.M., Markus R.P. Injury switches melatonin production source from endocrine (pineal) to paracrine (phagocytes)—Melatonin in human colostrum and colostrum phagocytes. J. Pineal Res. 2006;41:136–141. doi:10.1111/j.1600-079X.2006.00345.x. [PubMed] [CrossRef] [Google Scholar]

182. Ahmad R., Haldar C. Photoperiodic regulation of MT1 and MT2 melatonin receptor expression in spleen and thymus of a tropical rodent Funambulus pennanti during reproductively active and inactive phases. Chronobiol. Int. 2010;27:446–462. doi:10.3109/07420521003666408. [PubMed] [CrossRef] [Google Scholar]

183. Garcia-Perganeda A., Pozo D., Guerrero J.M., Calvo J.R. Signal transduction for melatonin in human lymphocytes: Involvement of a pertussis toxin-sensitive G protein. J. Immunol. 1997;159:3774–3781. [PubMed] [Google Scholar]

184. Vishwas D.K., Haldar C. Photoperiodic induced melatonin regulates immunity and expression pattern of melatonin receptor MT1 in spleen and bone marrow mononuclear cells of male golden hamster. J. Photochem. Photobiol. B. 2013;128:107–114. doi:10.1016/j.jphotobiol.2013.08.018. [PubMed] [CrossRef] [Google Scholar]

185. Lardone P.J., Rubio A., Cerrillo I., Gomez-Corvera A., Carrillo-Vico A., Sanchez-Hidalgo M., Guerrero J.M., Fernandez-Riejos P., Sanchez-Margalet V., Molinero P. Blocking of melatonin synthesis and MT(1) receptor impairs the activation of Jurkat T cells. Cell Mol. Life Sci. 2010;67:3163–3172. doi:10.1007/s00018-010-0374-y. [PubMed] [CrossRef] [Google Scholar]

186. Mohseni M., Mihandoost E., Shirazi A., Sepehrizadeh Z., Bazzaz J.T., Ghazi-khansari M. Melatonin may play a role in modulation of bax and bcl-2 expression levels to protect rat peripheral blood lymphocytes from gamma irradiation-induced apoptosis. Mutat. Res. 2012;738–739:19–27. doi:10.1016/j.mrfmmm.2012.08.006. [PubMed] [CrossRef] [Google Scholar]

187. Guo Q., Dong Y., Cao J., Wang Z., Zhang Z., Chen Y. Developmental changes of melatonin receptor expression in the spleen of the chicken, Gallus domesticus. Acta Histochem. 2015;117:559–565. doi:10.1016/j.acthis.2015.05.002. [PubMed] [CrossRef] [Google Scholar]

188. Vaughan M.K., Hubbard G.B., Champney T.H., Vaughan G.M., Little J.C., Reiter R.J. Splenic hypertrophy and extramedullary hematopoiesis induced in male Syrian hamsters by short photoperiod or melatonin injections and reversed by melatonin pellets or pinealectomy. Am. J. Anat. 1987;179:131–136. doi:10.1002/aja.1001790205. [PubMed] [CrossRef] [Google Scholar]

189. Lopez Gonzalez M.A., Guerrero J.M., Ceballo Pedraja J.M., Delgado Moreno F. Melatonin in palate tonsils with recurrent acute tonsillitis and tonsillar hypertrophy. Acta Otorrinolaringol. Esp. 1998;49:625–628. [PubMed] [Google Scholar]

190. Barjavel M.J., Mamdouh Z., Raghbate N., Bakouche O. Differential expression of the melatonin receptor in human monocytes. J. Immunol. 1998;160:1191–1197. [PubMed] [Google Scholar]

191. Kim Y.O., Ahn Y.K., Kim J.H. Influence of melatonin on immunotoxicity of cadmium. Int. J. Immunopharmacol. 2000;22:275–284. doi:10.1016/S0192-0561(99)00082-X. [PubMed] [CrossRef] [Google Scholar]

192. Silva S.O., Rodrigues M.R., Ximenes V.F., Bueno-da-Silva A.E., Amarante-Mendes G.P., Campa A. Neutrophils as a specific target for melatonin and kynuramines: Effects on cytokine release. J. Neuroimmunol. 2004;156:146–152. doi:10.1016/j.jneuroim.2004.07.015. [PubMed] [CrossRef] [Google Scholar]

193. Suke S.G., Pathak R., Ahmed R.S., Tripathi A.K., Banerjee B.D. Melatonin treatment prevents modulation of cell-mediated immune response induced by propoxur in rats. Indian J. Biochem. Biophys. 2008;45:278–281. [PubMed] [Google Scholar]

194. Ghosh S., Singh A.K., Haldar C. Seasonal modulation of immunity by melatonin and gonadal steroids in a short day breeder goat Capra hircus. Theriogenology. 2014;82:1121–1130. doi:10.1016/j.theriogenology.2014.07.035. [PubMed] [CrossRef] [Google Scholar]

195. Garcia-Maurino S., Pozo D., Carrillo-Vico A., Calvo J.R., Guerrero J.M. Melatonin activates Th1 lymphocytes by increasing IL-12 production. Life Sci. 1999;65:2143–2150. doi:10.1016/S0024-3205(99)00479-8. [PubMed] [CrossRef] [Google Scholar]

196. Xia M.Z., Liang Y.L., Wang H., Chen X., Huang Y.Y., Zhang Z.H., Chen Y.H., Zhang C., Zhao M., Xu D.X., et al. Melatonin modulates TLR4-mediated inflammatory genes through MyD88- and TRIF-dependent signaling pathways in lipopolysaccharide-stimulated RAW264.7 cells. J. Pineal Res. 2012;53:325–334. doi:10.1111/j.1600-079X.2012.01002.x. [PubMed] [CrossRef] [Google Scholar]

197. Carrillo-Vico A., Reiter R.J., Lardone P.J., Herrera J.L., Fernandez-Montesinos R., Guerrero J.M., Pozo D. The modulatory role of melatonin on immune responsiveness. Curr. Opin. Investig. Drugs. 2006;7:423–431. [PubMed] [Google Scholar]

198. Carrillo-Vico A., Lardone P.J., Fernandez-Santos J.M., Martin-Lacave I., Calvo J.R., Karasek M., Guerrero J.M. Human lymphocyte-synthesized melatonin is involved in the regulation of the interleukin-2/interleukin-2 receptor system. J. Clin. Endocrinol. Metab. 2005;90:992–1000. doi:10.1210/jc.2004-1429. [PubMed] [CrossRef] [Google Scholar]

199. Morrey K.M., McLachlan J.A., Serkin C.D., Bakouche O. Activation of human monocytes by the pineal hormone melatonin. J. Immunol. 1994;153:2671–2680. [PubMed] [Google Scholar]

200. Bouhafs R.K., Jarstrand C. Effects of antioxidants on surfactant peroxidation by stimulated human polymorphonuclear leukocytes. Free Radic. Res. 2002;36:727–734. doi:10.1080/10715760290032593. [PubMed] [CrossRef] [Google Scholar]

201. Vishwas D.K., Mukherjee A., Haldar C., Dash D., Nayak M.K. Improvement of oxidative stress and immunity by melatonin: An age dependent study in golden hamster. Exp. Gerontol. 2013;48:168–182. doi:10.1016/j.exger.2012.11.012. [PubMed] [CrossRef] [Google Scholar]

202. Yadav S.K., Haldar C. Experimentally induced stress, oxidative load and changes in immunity in a tropical wild bird, Perdicula asiatica: Involvement of melatonin and glucocorticoid receptors. Zoology. 2014;117:261–268. doi:10.1016/j.zool.2014.01.003. [PubMed] [CrossRef] [Google Scholar]

203. Miyamoto M. Pharmacology of ramelteon, a selective MT1/MT2 receptor agonist: A novel therapeutic drug for sleep disorders. CNS Neurosci. Ther. 2009;15:32–51. doi:10.1111/j.1755-5949.2008.00066.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

204. Edgar R.S., Green E.W., Zhao Y., van Ooijen G., Olmedo M., Qin X., Xu Y., Pan M., Valekunja U.K., Feeney K.A., et al. Peroxiredoxins are conserved markers of circadian rhythms. Nature. 2012;485:459–464. doi:10.1038/nature11088. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

205. Sturgeon S.R., Luisi N., Balasubramanian R., Reeves K.W. Sleep duration and endometrial cancer risk. Cancer Causes Control. 2012;23:547–553. doi:10.1007/s10552-012-9912-2. [PubMed] [CrossRef] [Google Scholar]

206. Liu Z., Gan L., Luo D., Sun C. Melatonin promotes circadian rhythm-induced proliferation through interaction of Clock/HDAC3/c-Myc in mice adipose tissue. J. Pineal Res. 2016 doi:10.1111/jpi.12383. [PubMed] [CrossRef] [Google Scholar]

207. Tamura H., Takasaki A., Taketani T., Tanabe M., Lee L., Tamura I., Maekawa R., Aasada H., Yamagata Y., Sugino N. Melatonin and female reproduction. J. Obstet. Gynaecol. Res. 2014;40:1–11. doi:10.1111/jog.12177. [PubMed] [CrossRef] [Google Scholar]

208. Lundmark P.O., Pandi-Perumal S.R., Srinivasan V., Cardinali D.P., Rosenstein R.E. Melatonin in the eye: Implications for glaucoma. Exp. Eye Res. 2007;84:1021–1030. doi:10.1016/j.exer.2006.10.018. [PubMed] [CrossRef] [Google Scholar]

209. Espino J., Pariente J.A., Rodriguez A.B. Role of melatonin on diabetes-related metabolic disorders. World J. Diabetes. 2011;2:82–91. doi:10.4239/wjd.v2.i6.82. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

210. Hardeland R. Neurobiology, pathophysiology, and treatment of melatonin deficiency and dysfunction. Sci. World J. 2012;2012:640389. doi:10.1100/2012/640389. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

211. Torres-Farfan C., Seron-Ferre M., Dinet V., Korf H.W. Immunocytochemical demonstration of day/night changes of clock gene protein levels in the murine adrenal gland: Differences between melatonin-proficient (C3H) and melatonin-deficient (C57BL) mice. J. Pineal Res. 2006;40:64–70. doi:10.1111/j.1600-079X.2005.00279.x. [PubMed] [CrossRef] [Google Scholar]

212. Johnston J.D., Tournier B.B., Andersson H., Masson-Pevet M., Lincoln G.A., Hazlerigg D.G. Multiple effects of melatonin on rhythmic clock gene expression in the mammalian pars tuberalis. Endocrinology. 2006;147:959–965. doi:10.1210/en.2005-1100. [PubMed] [CrossRef] [Google Scholar]

213. Dinet V., Ansari N., Torres-Farfan C., Korf H.W. Clock gene expression in the retina of melatonin-proficient (C3H) and melatonin-deficient (C57BL) mice. J. Pineal Res. 2007;42:83–91. doi:10.1111/j.1600-079X.2006.00387.x. [PubMed] [CrossRef] [Google Scholar]

214. Chellappa S.L., Viola A.U., Schmidt C., Bachmann V., Gabel V., Maire M., Reichert C.F., Valomon A., Gotz T., Landolt H.P., et al. Human melatonin and alerting response to blue-enriched light depend on a polymorphism in the clock gene PER3. J. Clin. Endocrinol. Metab. 2012;97:E433–E437. doi:10.1210/jc.2011-2391. [PubMed] [CrossRef] [Google Scholar]

215. West A., Dupre S.M., Yu L., Paton I.R., Miedzinska K., McNeilly A.S., Davis J.R., Burt D.W., Loudon A.S. Npas4 is activated by melatonin, and drives the clock gene Cry1 in the ovine pars tuberalis. Mol. Endocrinol. 2013;27:979–989. doi:10.1210/me.2012-1366. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

216. Bracci M., Manzella N., Copertaro A., Staffolani S., Strafella E., Barbaresi M., Copertaro B., Rapisarda V., Valentino M., Santarelli L. Rotating-shift nurses after a day off: Peripheral clock gene expression, urinary melatonin, and serum 17-beta-estradiol levels. Scand. J. Work Environ. Health. 2014;40:295–304. doi:10.5271/sjweh.3414. [PubMed] [CrossRef] [Google Scholar]

217. Ikeno T., Nelson R.J. Acute melatonin treatment alters dendritic morphology and circadian clock gene expression in the hippocampus of Siberian hamsters. Hippocampus. 2015;25:142–148. doi:10.1002/hipo.22358. [PubMed] [CrossRef] [Google Scholar]

218. Nagy A.D., Iwamoto A., Kawai M., Goda R., Matsuo H., Otsuka T., Nagasawa M., Furuse M., Yasuo S. Melatonin adjusts the expression pattern of clock genes in the suprachiasmatic nucleus and induces antidepressant-like effect in a mouse model of seasonal affective disorder. Chronobiol. Int. 2015;32:447–457. doi:10.3109/07420528.2014.992525. [PubMed] [CrossRef] [Google Scholar]

219. Rodenbeck A., Hajak G. Neuroendocrine dysregulation in primary insomnia. Rev. Neurol. 2001;157:S57–S61. [PubMed] [Google Scholar]

220. Takaesu Y., Futenma K., Kobayashi M., Komada Y., Tanaka N., Yamashina A., Inoue Y. A preliminary study on the relationships between diurnal melatonin secretion profile and sleep variables in patients emergently admitted to the coronary care unit. Chronobiol. Int. 2015;32:875–879. doi:10.3109/07420528.2015.1048869. [PubMed] [CrossRef] [Google Scholar]

221. Evely K.M., Hudson R.L., Dubocovich M.L., Haj-Dahmane S. Melatonin receptor activation increases glutamatergic synaptic transmission in the rat medial lateral habenula. Synapse. 2016;70:181–186. doi:10.1002/syn.21892. [PubMed] [CrossRef] [Google Scholar]

222. Waldhauser F., Kovacs J., Reiter E. Age-related changes in melatonin levels in humans and its potential consequences for sleep disorders. Exp. Gerontol. 1998;33:759–772. doi:10.1016/S0531-5565(98)00054-0. [PubMed] [CrossRef] [Google Scholar]

223. Carpentieri A., Diaz De Barboza G., Areco V., Peralta Lopez M., Tolosa De Talamoni N. New perspectives in melatonin uses. Pharmacol. Res. 2012;65:437–444. doi:10.1016/j.phrs.2012.01.003. [PubMed] [CrossRef] [Google Scholar]

224. Lemoine P., Zisapel N. Prolonged-release formulation of melatonin (Circadin) for the treatment of insomnia. Expert Opin. Pharmacother. 2012;13:895–905. doi:10.1517/14656566.2012.667076. [PubMed] [CrossRef] [Google Scholar]

225. Srinivasan V., Pandi-Perumal S.R., Trahkt I., Spence D.W., Poeggeler B., Hardeland R., Cardinali D.P. Melatonin and melatonergic drugs on sleep: Possible mechanisms of action. Int. J. Neurosci. 2009;119:821–846. doi:10.1080/00207450802328607. [PubMed] [CrossRef] [Google Scholar]

226. Vimala P.V., Bhutada P.S., Patel F.R. Therapeutic potential of agomelatine in epilepsy and epileptic complications. Med. Hypotheses. 2014;82:105–110. doi:10.1016/j.mehy.2013.11.017. [PubMed] [CrossRef] [Google Scholar]

228. Li F., Li S., Li H.B., Deng G.F., Ling W.H., Xu X.R. Antiproliferative activities of tea and herbal infusions. Food Funct. 2013;4:530–538. doi:10.1039/c2fo30252g. [PubMed] [CrossRef] [Google Scholar]

229. Zheng J., Zhou Y., Li Y., Xu D.P., Li S., Li H.B. Spices for prevention and treatment of cancers. Nutrients. 2016;8:495. doi:10.3390/nu8080495. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

230. Zhou Y., Li Y., Zhou T., Zheng J., Li S., Li H.B. Dietary natural products for prevention and treatment of liver cancer. Nutrients. 2016;8:156. doi:10.3390/nu8030156. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

231. Zhou Y., Zheng J., Li Y., Xu D.P., Li S., Chen Y.M., Li H.B. Natural polyphenols for prevention and treatment of cancer. Nutrients. 2016;8:515. doi:10.3390/nu8080515. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

232. Wu S.M., Lin W.Y., Shen C.C., Pan H.C., Keh-Bin W., Chen Y.C., Jan Y.J., Lai D.W., Tang S.C., Tien H.R., et al. Melatonin set out to ER stress signaling thwarts epithelial mesenchymal transition and peritoneal dissemination via calpain-mediated C/EBPbeta and NFkappaB cleavage. J. Pineal Res. 2016;60:142–154. doi:10.1111/jpi.12295. [PubMed] [CrossRef] [Google Scholar]

233. Hevia D., Gonzalez-Menendez P., Quiros-Gonzalez I., Miar A., Rodriguez-Garcia A., Tan D.X., Reiter R.J., Mayo J.C., Sainz R.M. Melatonin uptake through glucose transporters: A new target for melatonin inhibition of cancer. J. Pineal Res. 2015;58:234–250. doi:10.1111/jpi.12210. [PubMed] [CrossRef] [Google Scholar]

234. Yun S.M., Woo S.H., Oh S.T., Hong S.E., Choe T.B., Ye S.K., Kim E.K., Seong M.K., Kim H.A., Noh W.C., et al. Melatonin enhances arsenic trioxide-induced cell death via sustained upregulation of Redd1 expression in breast cancer cells. Mol. Cell Endocrinol. 2016;422:64–73. doi:10.1016/j.mce.2015.11.016. [PubMed] [CrossRef] [Google Scholar]

235. Borin T.F., Arbab A.S., Gelaleti G.B., Ferreira L.C., Moschetta M.G., Jardim-Perassi B.V., Iskander A.S., Varma N.R., Shankar A., Coimbra V.B., et al. Melatonin decreases breast cancer metastasis by modulating Rho-associated kinase protein-1 expression. J. Pineal Res. 2016;60:3–15. doi:10.1111/jpi.12270. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

236. Ziolko E., Kokot T., Skubis A., Sikora B., Szota-Czyz J., Kruszniewska-Rajs C., Wierzgon J., Mazurek U., Grochowska-Niedworok E., Muc-Wierzgon M. The profile of melatonin receptors gene expression and genes associated with their activity in colorectal cancer: A preliminary report. J. Biol. Regul. Homeost. Agents. 2015;29:823–828. [PubMed] [Google Scholar]

237. Watanabe M., Kobayashi Y., Takahashi N., Kiguchi K., Ishizuka B. Expression of melatonin receptor (MT1) and interaction between melatonin and estrogen in endometrial cancer cell line. J. Obstet. Gynaecol. Res. 2008;34:567–573. doi:10.1111/j.1447-0756.2008.00818.x. [PubMed] [CrossRef] [Google Scholar]

238. Chottanapund S., Van Duursen M.B., Navasumrit P., Hunsonti P., Timtavorn S., Ruchirawat M., Van den Berg M. Anti-aromatase effect of resveratrol and melatonin on hormonal positive breast cancer cells co-cultured with breast adipose fibroblasts. Toxicol. In Vitro. 2014;28:1215–1221. doi:10.1016/j.tiv.2014.05.015. [PubMed] [CrossRef] [Google Scholar]

239. Sohn E.J., Won G., Lee J., Lee S., Kim S.H. Upregulation of miRNA3195 and miRNA374b Mediates the anti-angiogenic properties of melatonin in Hypoxic PC-3 prostate cancer cells. J. Cancer. 2015;6:19–28. doi:10.7150/jca.9591. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

240. Wei J.Y., Li W.M., Zhou L.L., Lu Q.N., He W. Melatonin induces apoptosis of colorectal cancer cells through HDAC4 nuclear import mediated by CaMKII inactivation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2015;58:429–438. doi:10.1111/jpi.12226. [PubMed] [CrossRef] [Google Scholar]

241. Ordonez R., Carbajo-Pescador S., Prieto-Dominguez N., Garcia-Palomo A., Gonzalez-Gallego J., Mauriz J.L. Inhibition of matrix metalloproteinase-9 and nuclear factor kappa B contribute to melatonin prevention of motility and invasiveness in HepG2 liver cancer cells. J. Pineal Res. 2014;56:20–30. doi:10.1111/jpi.12092. [PubMed] [CrossRef] [Google Scholar]

242. Lin Y.W., Lee L.M., Lee W.J., Chu C.Y., Tan P., Yang Y.C., Chen W.Y., Yang S.F., Hsiao M., Chien M.H. Melatonin inhibits MMP-9 transactivation and renal cell carcinoma metastasis by suppressing Akt-MAPKs pathway and NF-kappaB DNA-binding activity. J. Pineal Res. 2016;60:277–290. doi:10.1111/jpi.12308. [PubMed] [CrossRef] [Google Scholar]

243. Alonso-Gonzalez C., Gonzalez A., Martinez-Campa C., Menendez-Menendez J., Gomez-Arozamena J., Garcia-Vidal A., Cos S. Melatonin enhancement of the radiosensitivity of human breast cancer cells is associated with the modulation of proteins involved in estrogen biosynthesis. Cancer Lett. 2016;370:145–152. doi:10.1016/j.canlet.2015.10.015. [PubMed] [CrossRef] [Google Scholar]

244. Ben-David M.A., Elkayam R., Gelernter I., Pfeffer R.M. Melatonin for prevention of breast radiation dermatitis: A phase II, prospective, double-blind rendomized trial. Isr. Med. Assoc. J. 2016;18:188–192. [PubMed] [Google Scholar]

245. Madhu P., Reddy K.P., Reddy P.S. Role of melatonin in mitigating chemotherapy-induced testicular dysfunction in Wistar rats. Drug Chem. Toxicol. 2016;39:137–146. doi:10.3109/01480545.2015.1055359. [PubMed] [CrossRef] [Google Scholar]

246. Wang Y.M., Jin B.Z., Ai F., Duan C.H., Lu Y.Z., Dong T.F., Fu Q.L. The efficacy and safety of melatonin in concurrent chemotherapy or radiotherapy for solid tumors: A meta-analysis of randomized controlled trials. Cancer Chemother. Pharmacol. 2012;69:1213–1220. doi:10.1007/s00280-012-1828-8. [PubMed] [CrossRef] [Google Scholar]

247. WHO Cardiovascular Diseases. [(accessed on 8 December 2016)]; Available online: http://www.who.int/mediacentre/factsheets/fs317/en/

248. Wolf K., Braun A., Haining E.J., Tseng Y.L., Kraft P., Schuhmann M.K., Gotru S.K., Chen W., Hermanns H.M., Stoll G., et al. Partially defective store operated calcium entry and Hem(ITAM) signaling in platelets of serotonin transporter deficient Mice. PLoS ONE. 2016;11:e147664. doi:10.1371/journal.pone.0147664. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

249. Grossman E., Laudon M., Yalcin R., Zengil H., Peleg E., Sharabi Y., Kamari Y., Shen-Orr Z., Zisapel N. Melatonin reduces night blood pressure in patients with nocturnal hypertension. Am. J. Med. 2006;119:898–902. doi:10.1016/j.amjmed.2006.02.002. [PubMed] [CrossRef] [Google Scholar]

250. Arangino S., Cagnacci A., Angiolucci M., Vacca A.M., Longu G., Volpe A., Melis G.B. Effects of melatonin on vascular reactivity, catecholamine levels, and blood pressure in healthy men. Am. J. Cardiol. 1999;83:1417–1419. doi:10.1016/S0002-9149(99)00112-5. [PubMed] [CrossRef] [Google Scholar]

251. Wu Q., Jing Y., Yuan X., Zhang X., Li B., Liu M., Wang B., Li H., Liu S., Xiu R. Melatonin treatment protects against acute spinal cord injury-induced disruption of blood spinal cord barrier in mice. J. Mol. Neurosci. 2014;54:714–722. doi:10.1007/s12031-014-0430-4. [PubMed] [CrossRef] [Google Scholar]

252. Girouard H., Denault C., Chulak C., de Champlain J. Treatment by N-acetylcysteine and melatonin increases cardiac baroreflex and improves antioxidant reserve. Am. J. Hypertens. 2004;17:947–954. doi:10.1016/j.amjhyper.2004.06.009. [PubMed] [CrossRef] [Google Scholar]

253. Girouard H., Chulak C., LeJossec M., Lamontagne D., de Champlain J. Chronic antioxidant treatment improves sympathetic functions and beta-adrenergic pathway in the spontaneously hypertensive rats. J. Hypertens. 2003;21:179–188. doi:10.1097/00004872-200301000-00028. [PubMed] [CrossRef] [Google Scholar]

254. Gurses I., Ozeren M., Serin M., Yucel N., Erkal H.S. Histopathological evaluation of melatonin as a protective agent in heart injury induced by radiation in a rat model. Pathol. Res. Pract. 2014;210:863–871. doi:10.1016/j.prp.2014.08.006. [PubMed] [CrossRef] [Google Scholar]

255. Yang Y., Fan C., Deng C., Zhao L., Hu W., Di S., Ma Z., Zhang Y., Qin Z., Jin Z., et al. Melatonin reverses flow shear stress-induced injury in bone marrow mesenchymal stem cells via activation of AMP-activated protein kinase signaling. J. Pineal Res. 2016;60:228–241. doi:10.1111/jpi.12306. [PubMed] [CrossRef] [Google Scholar]

256. Han D., Huang W., Li X., Gao L., Su T., Li X., Ma S., Liu T., Li C., Chen J., et al. Melatonin facilitates adipose-derived mesenchymal stem cells to repair the murine infarcted heart via the SIRT1 signaling pathway. J. Pineal Res. 2016;60:178–192. doi:10.1111/jpi.12299. [PubMed] [CrossRef] [Google Scholar]

257. Yang Y., Duan W., Jin Z., Yi W., Yan J., Zhang S., Wang N., Liang Z., Li Y., Chen W., et al. JAK2/STAT3 activation by melatonin attenuates the mitochondrial oxidative damage induced by myocardial ischemia/reperfusion injury. J. Pineal Res. 2013;55:275–286. doi:10.1111/jpi.12070. [PubMed] [CrossRef] [Google Scholar]

258. An R., Zhao L., Xi C., Li H., Shen G., Liu H., Zhang S., Sun L. Melatonin attenuates sepsis-induced cardiac dysfunction via a PI3K/Akt-dependent mechanism. Basic Res. Cardiol. 2016;111:8. doi:10.1007/s00395-015-0526-1. [PubMed] [CrossRef] [Google Scholar]

259. VanKirk T., Powers E., Dowse H.B. Melatonin increases the regularity of cardiac rhythmicity in the Drosophila heart in both wild-type and strains bearing pathogenic mutations. J. Comp. Physiol. B. 2017;187:63–78. doi:10.1007/s00360-016-1019-8. [PubMed] [CrossRef] [Google Scholar]

260. Dominguez-Rodriguez A., Abreu-Gonzalez P., Piccolo R., Galasso G., Reiter R.J. Melatonin is associated with reverse remodeling after cardiac resynchronization therapy in patients with heart failure and ventricular dyssynchrony. Int. J. Cardiol. 2016;221:359–363. doi:10.1016/j.ijcard.2016.07.056. [PubMed] [CrossRef] [Google Scholar]

261. Hu J., Zhang L., Yang Y., Guo Y., Fan Y., Zhang M., Man W., Gao E., Hu W., Reiter R.J., et al. Melatonin alleviates postinfarction cardiac remodeling and dysfunction by inhibiting Mst1. J. Pineal Res. 2017 doi:10.1111/jpi.12368. [PubMed] [CrossRef] [Google Scholar]

262. WHO Global Status Report on Noncommunicable Diseases 2014. [(accessed on 9 December 2016)]; Available online: http://www.who.int/nmh/publications/ncd-status-report-2014/en/

263. Simko F., Paulis L. Melatonin as a potential antihypertensive treatment. J. Pineal Res. 2007;42:319–322. doi:10.1111/j.1600-079X.2007.00436.x. [PubMed] [CrossRef] [Google Scholar]

264. Reiter R.J., Tan D.X., Leon J., Kilic U., Kilic E. When melatonin gets on your nerves: Its beneficial actions in experimental models of stroke. Exp. Biol. Med. 2005;230:104–117. [PubMed] [Google Scholar]

265. Hung M.W., Kravtsov G.M., Lau C.F., Poon A.M., Tipoe G.L., Fung M.L. Melatonin ameliorates endothelial dysfunction, vascular inflammation, and systemic hypertension in rats with chronic intermittent hypoxia. J. Pineal Res. 2013;55:247–256. doi:10.1111/jpi.12067. [PubMed] [CrossRef] [Google Scholar]

266. Qiao Y.F., Guo W.J., Li L., Shao S., Qiao X., Shao J.J., Zhang Q., Li R.S., Wang L.H. Melatonin attenuates hypertension-induced renal injury partially through inhibiting oxidative stress in rats. Mol. Med. Rep. 2016;13:21–26. doi:10.3892/mmr.2015.4495. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

267. Pechanova O., Paulis L., Simko F. Peripheral and central effects of melatonin on blood pressure regulation. Int. J. Mol. Sci. 2014;15:17920–17937. doi:10.3390/ijms151017920. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

268. Deng Y.Y., Shen F.C., Xie D., Han Q.P., Fang M., Chen C.B., Zeng H.K. Progress in drug treatment of cerebral edema. Mini Rev. Med. Chem. 2016;16:917–925. doi:10.2174/1389557516666160304151233. [PubMed] [CrossRef] [Google Scholar]

269. Tao J., Lv J., Li W., Zhang P., Mao C., Xu Z. Exogenous melatonin reduced blood pressure in late-term ovine fetus via MT1/MT2 receptor pathways. Reprod. Biol. 2016;16:212–217. doi:10.1016/j.repbio.2016.06.001. [PubMed] [CrossRef] [Google Scholar]

270. Butun I., Ekmekci H., Ciftci O., Sonmez H., Caner M., Altug T., Kokoglu E. The effects of different doses of melatonin on lipid peroxidation in diet-induced hypercholesterolemic rats. Bratisl. Lek. Listy. 2013;114:129–132. doi:10.4149/BLL_2013_028. [PubMed] [CrossRef] [Google Scholar]

271. Salmanoglu D.S., Gurpinar T., Vural K., Ekerbicer N., Dariverenli E., Var A. Melatonin and L-carnitin improves endothelial disfunction and oxidative stress in Type 2 diabetic rats. Redox Biol. 2016;8:199–204. doi:10.1016/j.redox.2015.11.007. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

272. She M., Hu X., Su Z., Zhang C., Yang S., Ding L., Laudon M., Yin W. Piromelatine, a novel melatonin receptor agonist, stabilizes metabolic profiles and ameliorates insulin resistance in chronic sleep restricted rats. Eur. J. Pharmacol. 2014;727:60–65. doi:10.1016/j.ejphar.2014.01.037. [PubMed] [CrossRef] [Google Scholar]

273. World Health Organization (WHO) Global Report on Diabetes. [(accessed on 18 December 2016)]; Available online: http://www.who.int/mediacentre/factsheets/fs312/en/

274. Zavodnik I.B., Lapshina E.A., Cheshchevik V.T., Dremza I.K., Kujawa J., Zabrodskaya S.V., Reiter R.J. Melatonin and succinate reduce rat liver mitochondrial dysfunction in diabetes. J. Physiol. Pharmacol. 2011;62:421–427. [PubMed] [Google Scholar]

275. Faria J.A., Kinote A., Ignacio-Souza L.M., de Araujo T.M., Razolli D.S., Doneda D.L., Paschoal L.B., Lellis-Santos C., Bertolini G.L., Velloso L.A., et al. Melatonin acts through MT1/MT2 receptors to activate hypothalamic Akt and suppress hepatic gluconeogenesis in rats. Am. J. Physiol. Endocrinol. Metab. 2013;305:E230–E242. doi:10.1152/ajpendo.00094.2013. [PubMed] [CrossRef] [Google Scholar]

276. Yu L., Liang H., Dong X., Zhao G., Jin Z., Zhai M., Yang Y., Chen W., Liu J., Yi W., et al. Reduced silent information regulator 1 signaling exacerbates myocardial ischemia-reperfusion injury in type 2 diabetic rats and the protective effect of melatonin. J. Pineal Res. 2015;59:376–390. doi:10.1111/jpi.12269. [PubMed] [CrossRef] [Google Scholar]

277. Costes S., Boss M., Thomas A.P., Matveyenko A.V. Activation of melatonin signaling promotes beta-cell survival and function. Mol. Endocrinol. 2015;29:682–692. doi:10.1210/me.2014-1293. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

278. Wongchitrat P., Lansubsakul N., Kamsrijai U., Sae-Ung K., Mukda S., Govitrapong P. Melatonin attenuates the high-fat diet and streptozotocin-induced reduction in rat hippocampal neurogenesis. Neurochem. Int. 2016;100:97–109. doi:10.1016/j.neuint.2016.09.006. [PubMed] [CrossRef] [Google Scholar]

279. Yildirimturk S., Batu S., Alatli C., Olgac V., Firat D., Sirin Y. The effects of supplemental melatonin administration on the healing of bone defects in streptozotocin-induced diabetic rats. J. Appl. Oral Sci. 2016;24:239–249. doi:10.1590/1678-775720150570. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

280. WHO Obesity and Overweight. [(accessed on 18 December 2016)]; Available online: http://www.who.int/mediacentre/factsheets/fs311/en/

281. Szewczyk-Golec K., Wozniak A., Reiter R.J. Inter-relationships of the chronobiotic, melatonin, with leptin and adiponectin: Implications for obesity. J. Pineal Res. 2015;59:277–291. doi:10.1111/jpi.12257. [PubMed] [CrossRef] [Google Scholar]

282. Jimenez-Aranda A., Fernandez-Vazquez G., Campos D., Tassi M., Velasco-Perez L., Tan D.X., Reiter R.J., Agil A. Melatonin induces browning of inguinal white adipose tissue in Zucker diabetic fatty rats. J. Pineal Res. 2013;55:416–423. doi:10.1111/jpi.12089. [PubMed] [CrossRef] [Google Scholar]

283. Winiarska K., Focht D., Sierakowski B., Lewandowski K., Orlowska M., Usarek M. NADPH oxidase inhibitor, apocynin, improves renal glutathione status in Zucker diabetic fatty rats: A comparison with melatonin. Chem. Biol. Interact. 2014;218:12–19. doi:10.1016/j.cbi.2014.04.005. [PubMed] [CrossRef] [Google Scholar]

284. Sharabiani M.T., Vermeulen R., Scoccianti C., Hosnijeh F.S., Minelli L., Sacerdote C., Palli D., Krogh V., Tumino R., Chiodini P., et al. Immunologic profile of excessive body weight. Biomarkers. 2011;16:243–251. doi:10.3109/1354750X.2010.547948. [PubMed] [CrossRef] [Google Scholar]

285. Favero G., Stacchiotti A., Castrezzati S., Bonomini F., Albanese M., Rezzani R., Rodella L.F. Melatonin reduces obesity and restores adipokine patterns and metabolism in obese (ob/ob) mice. Nutr. Res. 2015;35:891–900. doi:10.1016/j.nutres.2015.07.001. [PubMed] [CrossRef] [Google Scholar]

286. Guo B., Chatterjee S., Li L., Kim J.M., Lee J., Yechoor V.K., Minze L.J., Hsueh W., Ma K. The clock gene, brain and muscle Arnt-like 1, regulates adipogenesis via Wnt signaling pathway. FASEB J. 2012;26:3453–3463. doi:10.1096/fj.12-205781. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

287. Otway D.T., Mantele S., Bretschneider S., Wright J., Trayhurn P., Skene D.J., Robertson M.D., Johnston J.D. Rhythmic diurnal gene expression in human adipose tissue from individuals who are lean, overweight, and type 2 diabetic. Diabetes. 2011;60:1577–1581. doi:10.2337/db10-1098. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

288. McFadden E., Jones M.E., Schoemaker M.J., Ashworth A., Swerdlow A.J. The relationship between obesity and exposure to light at night: Cross-sectional analyses of over 100,000 women in the Breakthrough Generations Study. Am. J. Epidemiol. 2014;180:245–250. doi:10.1093/aje/kwu117. [PubMed] [CrossRef] [Google Scholar]

289. Nduhirabandi F., Huisamen B., Strijdom H., Blackhurst D., Lochner A. Short-term melatonin consumption protects the heart of obese rats independent of body weight change and visceral adiposity. J. Pineal Res. 2014;57:317–332. doi:10.1111/jpi.12171. [PubMed] [CrossRef] [Google Scholar]

290. Stacchiotti A., Favero G., Giugno L., Lavazza A., Reiter R.J., Rodella L.F., Rezzani R. Mitochondrial and metabolic dysfunction in renal convoluted tubules of obese mice: Protective role of melatonin. PLoS ONE. 2014;9:e111141. doi:10.1371/journal.pone.0111141. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

291. Sun H., Wang X., Chen J., Song K., Gusdon A.M., Li L., Bu L., Qu S. Melatonin improves non-alcoholic fatty liver disease via MAPK-JNK/P38 signaling in high-fat-diet-induced obese mice. Lipids Health Dis. 2016;15:202. doi:10.1186/s12944-016-0370-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

292. Sagrillo-fa*gundes L., Assuncao Salustiano E.M., Yen P.W., Soliman A., Vaillancourt C. Melatonin in pregnancy: Effects on brain development and CNS programming disorders. Curr. Pharm. Des. 2016;22:978–986. doi:10.2174/1381612822666151214104624. [PubMed] [CrossRef] [Google Scholar]

293. Ding K., Wang H., Xu J., Li T., Zhang L., Ding Y., Zhu L., He J., Zhou M. Melatonin stimulates antioxidant enzymes and reduces oxidative stress in experimental traumatic brain injury: The Nrf2-ARE signaling pathway as a potential mechanism. Free Radic. Biol. Med. 2014;73:1–11. doi:10.1016/j.freeradbiomed.2014.04.031. [PubMed] [CrossRef] [Google Scholar]

294. Yang Y., Jiang S., Dong Y., Fan C., Zhao L., Yang X., Li J., Di S., Yue L., Liang G., et al. Melatonin prevents cell death and mitochondrial dysfunction via a SIRT1-dependent mechanism during ischemic-stroke in mice. J. Pineal Res. 2015;58:61–70. doi:10.1111/jpi.12193. [PubMed] [CrossRef] [Google Scholar]

295. Chen J., Chen G., Li J., Qian C., Mo H., Gu C., Yan F., Yan W., Wang L. Melatonin attenuates inflammatory response-induced brain edema in early brain injury following a subarachnoid hemorrhage: A possible role for the regulation of pro-inflammatory cytokines. J. Pineal Res. 2014;57:340–347. doi:10.1111/jpi.12173. [PubMed] [CrossRef] [Google Scholar]

296. Lee E.J., Lee M.Y., Chen H.Y., Hsu Y.S., Wu T.S., Chen S.T., Chang G.L. Melatonin attenuates gray and white matter damage in a mouse model of transient focal cerebral ischemia. J. Pineal Res. 2005;38:42–52. doi:10.1111/j.1600-079X.2004.00173.x. [PubMed] [CrossRef] [Google Scholar]

297. Pazar A., Kolgazi M., Memisoglu A., Bahadir E., Sirvanci S., Yaman A., Yegen B.C., Ozek E. The neuroprotective and anti-apoptotic effects of melatonin on hemolytic hyperbilirubinemia-induced oxidative brain damage. J. Pineal Res. 2016;60:74–83. doi:10.1111/jpi.12292. [PubMed] [CrossRef] [Google Scholar]

298. Keskin I., Kaplan S., Kalkan S., Sutcu M., Ulkay M.B., Esener O.B. Evaluation of neuroprotection by melatonin against adverse effects of prenatal exposure to a nonsteroidal anti-inflammatory drug during peripheral nerve development. Int. J. Dev. Neurosci. 2015;41:1–7. doi:10.1016/j.ijdevneu.2014.12.002. [PubMed] [CrossRef] [Google Scholar]

299. Aranda M.L., Fleitas M.F.G., De Laurentiis A., Sarmiento M.I.K., Chianelli M., Sande P.H., Dorfman D., Rosenstein R.E. Neuroprotective effect of melatonin in experimental optic neuritis in rats. J. Pineal Res. 2016;60:360–372. doi:10.1111/jpi.12318. [PubMed] [CrossRef] [Google Scholar]

300. Willis G.L. Parkinson’s disease as a neuroendocrine disorder of circadian function: Dopamine-melatonin imbalance and the visual system in the genesis and progression of the degenerative process. Rev. Neurosci. 2008;19:245–316. doi:10.1515/REVNEURO.2008.19.4-5.245. [PubMed] [CrossRef] [Google Scholar]

301. Zhang S., Wang P., Ren L., Hu C., Bi J. Protective effect of melatonin on soluble Abeta1–42-induced memory impairment, astrogliosis, and synaptic dysfunction via the Musashi1/Notch1/Hes1 signaling pathway in the rat hippocampus. Alzheimers Res. Ther. 2016;8:40. doi:10.1186/s13195-016-0206-x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

302. Breen D.P., Nombela C., Vuono R., Jones P.S., Fisher K., Burn D.J., Brooks D.J., Reddy A.B., Rowe J.B., Barker R.A. Hypothalamic volume loss is associated with reduced melatonin output in Parkinson’s disease. Mov. Disord. 2016;31:1062–1066. doi:10.1002/mds.26592. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

303. Sun X., Ran D., Zhao X., Huang Y., Long S., Liang F., Guo W., Nucifora F.C., Jr., Gu H., Lu X., et al. Melatonin attenuates hLRRK2-induced sleep disturbances and synaptic dysfunction in a Drosophila model of Parkinson’s disease. Mol. Med. Rep. 2016;13:3936–3944. doi:10.3892/mmr.2016.4991. [PubMed] [CrossRef] [Google Scholar]

304. Cardinali D.P., Vigo D.E., Olivar N., Vidal M.F., Furio A.M., Brusco L.I. Therapeutic application of melatonin in mild cognitive impairment. Am. J. Neurodegener. Dis. 2012;1:280–291. [PMC free article] [PubMed] [Google Scholar]

305. Mukda S., Panmanee J., Boontem P., Govitrapong P. Melatonin administration reverses the alteration of amyloid precursor protein-cleaving secretases expression in aged mouse hippocampus. Neurosci. Lett. 2016;621:39–46. doi:10.1016/j.neulet.2016.04.013. [PubMed] [CrossRef] [Google Scholar]

306. Waseem M., Tabassum H., Parvez S. Neuroprotective effects of melatonin as evidenced by abrogation of oxaliplatin induced behavioral alterations, mitochondrial dysfunction and neurotoxicity in rat brain. Mitochondrion. 2016;30:168–176. doi:10.1016/j.mito.2016.08.001. [PubMed] [CrossRef] [Google Scholar]

307. Li J.G., Zhang G.W., Meng Z.Z., Wang L.Z., Liu H.Y., Liu Q., Buren B. Neuroprotective effect of acute melatonin treatment on hippocampal neurons against irradiation by inhibition of caspase-3. Exp. Ther. Med. 2016;11:2385–2390. doi:10.3892/etm.2016.3215. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

308. Koc G.E., Kaplan S., Altun G., Gumus H., Deniz O.G., Aydin I., Onger M.E., Altunkaynak Z. Neuroprotective effects of melatonin and omega-3 on hippocampal cells prenatally exposed to 900 MHz electromagnetic fields. Int. J. Radiat. Biol. 2016;92:590–595. [PubMed] [Google Scholar]

309. Letra-Vilela R., Sanchez-Sanchez A.M., Rocha A.M., Martin V., Branco-Santos J., Puente-Moncada N., Santa-Marta M., Outeiro T.F., Antolin I., Rodriguez C., et al. Distinct roles of N-acetyl and 5-methoxy groups in the antiproliferative and neuroprotective effects of melatonin. Mol. Cell Endocrinol. 2016;434:238–249. doi:10.1016/j.mce.2016.07.012. [PubMed] [CrossRef] [Google Scholar]

310. Acuna-Castroviejo D., Escames G., Venegas C., Diaz-Casado M.E., Lima-Cabello E., Lopez L.C., Rosales-Corral S., Tan D.X., Reiter R.J. Extrapineal melatonin: Sources, regulation, and potential functions. Cell Mol. Life Sci. 2014;71:2997–3025. doi:10.1007/s00018-014-1579-2. [PubMed] [CrossRef] [Google Scholar]

311. Tresguerres I.F., Tamimi F., Eimar H., Barralet J.E., Prieto S., Torres J., Calvo-Guirado J.L., Tresguerres J.A. Melatonin dietary supplement as an anti-aging therapy for age-related bone loss. Rejuvenation Res. 2014;17:341–346. doi:10.1089/rej.2013.1542. [PubMed] [CrossRef] [Google Scholar]

312. Hibaoui Y., Reutenauer-Patte J., Patthey-Vuadens O., Ruegg U.T., Dorchies O.M. Melatonin improves muscle function of the dystrophic mdx5Cv mouse, a model for duch*enne muscular dystrophy. J. Pineal Res. 2011;51:163–171. doi:10.1111/j.1600-079X.2011.00871.x. [PubMed] [CrossRef] [Google Scholar]

313. Shin I.S., Park J.W., Shin N.R., Jeon C.M., Kwon O.K., Lee M.Y., Kim H.S., Kim J.C., Oh S.R., Ahn K.S. Melatonin inhibits MUC5AC production via suppression of MAPK signaling in human airway epithelial cells. J. Pineal Res. 2014;56:398–407. doi:10.1111/jpi.12127. [PubMed] [CrossRef] [Google Scholar]

314. Sehajpal J., Kaur T., Bhatti R., Singh A.P. Role of progesterone in melatonin-mediated protection against acute kidney injury. J. Surg. Res. 2014;191:441–447. doi:10.1016/j.jss.2014.04.025. [PubMed] [CrossRef] [Google Scholar]

315. Elbe H., Vardi N., Esrefoglu M., Ates B., Yologlu S., Taskapan C. Amelioration of streptozotocin-induced diabetic nephropathy by melatonin, quercetin, and resveratrol in rats. Hum. Exp. Toxicol. 2015;34:100–113. doi:10.1177/0960327114531995. [PubMed] [CrossRef] [Google Scholar]

316. Bai X.Z., He T., Gao J.X., Liu Y., Liu J.Q., Han S.C., Li Y., Shi J.H., Han J.T., Tao K., et al. Melatonin prevents acute kidney injury in severely burned rats via the activation of SIRT1. Sci. Rep. 2016;6:32199. doi:10.1038/srep32199. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

317. Zhao J., Young Y.K., Fradette J., Eliopoulos N. Melatonin pretreatment of human adipose tissue-derived mesenchymal stromal cells enhances their prosurvival and protective effects on human kidney cells. Am. J. Physiol. Ren. Physiol. 2015;308:F1474–F1483. doi:10.1152/ajprenal.00512.2014. [PubMed] [CrossRef] [Google Scholar]

318. Wierrani F., Grin W., Hlawka B., Kroiss A., Grunberger W. Elevated serum melatonin levels during human late pregnancy and labour. J. Obstet. Gynaecol. 1997;17:449–451. doi:10.1080/01443619750112411. [PubMed] [CrossRef] [Google Scholar]

319. Takayama H., Nakamura Y., Tamura H., Yamagata Y., Harada A., Nakata M., Sugino N., Kato H. Pineal gland (melatonin) affects the parturition time, but not luteal function and fetal growth, in pregnant rats. Endocr. J. 2003;50:37–43. doi:10.1507/endocrj.50.37. [PubMed] [CrossRef] [Google Scholar]

320. Tola E.N., Mungan M.T., Uguz A.C., Naziroglu M. Intracellular Ca2+ and antioxidant values induced positive effect on fertilisation ratio and oocyte quality of granulosa cells in patients undergoing in vitro fertilisation. Reprod. Fertil. Dev. 2013;25:746–752. doi:10.1071/RD12144. [PubMed] [CrossRef] [Google Scholar]

321. Bromfield E.G., Aitken R.J., Anderson A.L., McLaughlin E.A., Nixon B. The impact of oxidative stress on chaperone-mediated human sperm-egg interaction. Hum. Reprod. 2015;30:2597–2613. doi:10.1093/humrep/dev214. [PubMed] [CrossRef] [Google Scholar]

322. Kose O., Arabaci T., Kara A., Yemenoglu H., Kermen E., Kizildag A., Gedikli S., Ozkanlar S. Effects of melatonin on oxidative stress index and Alveolar bone loss in diabetic rats with periodontitis. J. Periodontol. 2016;87:e82–e90. doi:10.1902/jop.2016.150541. [PubMed] [CrossRef] [Google Scholar]

323. Arabaci T., Kermen E., Ozkanlar S., Kose O., Kara A., Kizildag A., Duman S.B., Ibisoglu E. Therapeutic effects of melatonin on alveolar bone resorption after experimental periodontitis in rats: A biochemical and immunohistochemical study. J. Periodontol. 2015;86:874–881. doi:10.1902/jop.2015.140599. [PubMed] [CrossRef] [Google Scholar]

324. Hardeland R. Melatonin and the theories of aging: A critical appraisal of melatonin’s role in antiaging mechanisms. J. Pineal Res. 2013;55:325–356. doi:10.1111/jpi.12090. [PubMed] [CrossRef] [Google Scholar]

325. Wahab M.H., Akoul E.S., Abdel-Aziz A.A. Modulatory effects of melatonin and vitamin E on doxorubicin-induced cardiotoxicity in Ehrlich ascites carcinoma-bearing mice. Tumori. 2000;86:157–162. [PubMed] [Google Scholar]

326. Andersen L.P., Rosenberg J., Gogenur I. Perioperative melatonin: Not ready for prime time. Br. J. Anaesth. 2014;112:7–8. doi:10.1093/bja/aet332. [PubMed] [CrossRef] [Google Scholar]

327. Seabra M.L., Bignotto M., Pinto L.R., Jr., Tufik S. Randomized, double-blind clinical trial, controlled with placebo, of the toxicology of chronic melatonin treatment. J. Pineal Res. 2000;29:193–200. doi:10.1034/j.1600-0633.2002.290401.x. [PubMed] [CrossRef] [Google Scholar]

328. Jahnke G., Marr M., Myers C., Wilson R., Travlos G., Price C. Maternal and developmental toxicity evaluation of melatonin administered orally to pregnant Sprague-Dawley rats. Toxicol. Sci. 1999;50:271–279. doi:10.1093/toxsci/50.2.271. [PubMed] [CrossRef] [Google Scholar]

329. Wright B., Sims D., Smart S., Alwazeer A., Alderson-Day B., Allgar V., Whitton C., Tomlinson H., Bennett S., Jardine J., et al. Melatonin versus placebo in children with autism spectrum conditions and severe sleep problems not amenable to behaviour management strategies: A randomised controlled crossover trial. J. Autism Dev. Disord. 2011;41:175–184. doi:10.1007/s10803-010-1036-5. [PubMed] [CrossRef] [Google Scholar]

330. Gringras P., Gamble C., Jones A.P., Wiggs L., Williamson P.R., Sutcliffe A., Montgomery P., Whitehouse W.P., Choonara I., Allport T., et al. Melatonin for sleep problems in children with neurodevelopmental disorders: Randomised double masked placebo controlled trial. BMJ. 2012;345:e6664. doi:10.1136/bmj.e6664. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

331. Holliman B.J., Chyka P.A. Problems in assessment of acute melatonin overdose. South. Med. J. 1997;90:451–453. doi:10.1097/00007611-199704000-00020. [PubMed] [CrossRef] [Google Scholar]

332. Gitto E., Aversa S., Salpietro C.D., Barberi I., Arrigo T., Trimarchi G., Reiter R.J., Pellegrino S. Pain in neonatal intensive care: Role of melatonin as an analgesic antioxidant. J. Pineal Res. 2012;52:291–295. doi:10.1111/j.1600-079X.2011.00941.x. [PubMed] [CrossRef] [Google Scholar]

333. Gitto E., Karbownik M., Reiter R.J., Tan D.X., Cuzzocrea S., Chiurazzi P., Cordaro S., Corona G., Trimarchi G., Barberi I. Effects of melatonin treatment in septic newborns. Pediatr. Res. 2001;50:756–760. doi:10.1203/00006450-200112000-00021. [PubMed] [CrossRef] [Google Scholar]

334. Gitto E., Romeo C., Reiter R.J., Impellizzeri P., Pesce S., Basile M., Antonuccio P., Trimarchi G., Gentile C., Barberi I., et al. Melatonin reduces oxidative stress in surgical neonates. J. Pediatr. Surg. 2004;39:184–189. doi:10.1016/j.jpedsurg.2003.10.003. [PubMed] [CrossRef] [Google Scholar]

335. Gitto E., Reiter R.J., Amodio A., Romeo C., Cuzzocrea E., Sabatino G., Buonocore G., Cordaro V., Trimarchi G., Barberi I. Early indicators of chronic lung disease in preterm infants with respiratory distress syndrome and their inhibition by melatonin. J. Pineal Res. 2004;36:250–255. doi:10.1111/j.1600-079X.2004.00124.x. [PubMed] [CrossRef] [Google Scholar]

336. Acil M., Basgul E., Celiker V., Karagoz A.H., Demir B., Aypar U. Perioperative effects of melatonin and midazolam premedication on sedation, orientation, anxiety scores and psychom*otor performance. Eur. J. Anaesthesiol. 2004;21:553–557. doi:10.1097/00003643-200407000-00009. [PubMed] [CrossRef] [Google Scholar]

337. Naguib M., Samarkandi A.H. The comparative dose-response effects of melatonin and midazolam for premedication of adult patients: A double-blinded, placebo-controlled study. Anesth. Analg. 2000;91:473–479. [PubMed] [Google Scholar]

338. Edmonds K.E., Stetson M.H. Pineal gland and melatonin affect testicular status in the adult marsh rice rat (Oryzomys palustris) Gen. Comp. Endocrinol. 1995;99:265–274. doi:10.1006/gcen.1995.1110. [PubMed] [CrossRef] [Google Scholar]

339. Kennaway D.J., Rowe S.A. Controlled-release melatonin implants delay puberty in rats without altering melatonin rhythmicity. J. Pineal Res. 1997;22:107–116. doi:10.1111/j.1600-079X.1997.tb00311.x. [PubMed] [CrossRef] [Google Scholar]

340. Kelestimur H., Ozcan M., Kacar E., Alcin E., Yilmaz B., Ayar A. Melatonin elicits protein kinase C-mediated calcium response in immortalized GT1–7 GnRH neurons. Brain Res. 2012;1435:24–28. doi:10.1016/j.brainres.2011.11.040. [PubMed] [CrossRef] [Google Scholar]

Dietary Sources and Bioactivities of Melatonin (2024)
Top Articles
Latest Posts
Article information

Author: Carlyn Walter

Last Updated:

Views: 5906

Rating: 5 / 5 (50 voted)

Reviews: 89% of readers found this page helpful

Author information

Name: Carlyn Walter

Birthday: 1996-01-03

Address: Suite 452 40815 Denyse Extensions, Sengermouth, OR 42374

Phone: +8501809515404

Job: Manufacturing Technician

Hobby: Table tennis, Archery, Vacation, Metal detecting, Yo-yoing, Crocheting, Creative writing

Introduction: My name is Carlyn Walter, I am a lively, glamorous, healthy, clean, powerful, calm, combative person who loves writing and wants to share my knowledge and understanding with you.